Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Necrostatin-1 Analogues: Critical Issues On The Specificity, Activity And In Vivo Use In Experimental Disease Models., N Takahashi, L Duprez, S Grootjans, A Cauwels, W Nerinckx, J B Duhadaway, V Goossens, R Roelandt, F Van Hauwermeiren, C Libert, W Declercq, N Callewaert, G C Prendergast, A Degterev, J Yuan, P Vandenabeele Nov 2012

Necrostatin-1 Analogues: Critical Issues On The Specificity, Activity And In Vivo Use In Experimental Disease Models., N Takahashi, L Duprez, S Grootjans, A Cauwels, W Nerinckx, J B Duhadaway, V Goossens, R Roelandt, F Van Hauwermeiren, C Libert, W Declercq, N Callewaert, G C Prendergast, A Degterev, J Yuan, P Vandenabeele

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × …


Genes Adopt Non-Optimal Codon Usage To Generate Cell Cycle-Dependent Oscillations In Protein Levels., Milana Frenkel-Morgenstern, Tamar Danon, Thomas Christian, Takao Igarashi, Lydia Cohen, Ya-Ming Hou, Lars Juhl Jensen Jan 2012

Genes Adopt Non-Optimal Codon Usage To Generate Cell Cycle-Dependent Oscillations In Protein Levels., Milana Frenkel-Morgenstern, Tamar Danon, Thomas Christian, Takao Igarashi, Lydia Cohen, Ya-Ming Hou, Lars Juhl Jensen

Department of Biochemistry and Molecular Biology Faculty Papers

The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non-optimal codon usage of genes expressed at this time, and lowest …