Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oncology

Signal Transduction

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Medicine and Health Sciences

Targeting The Αvβ3/Ngr2 Pathway In Neuroendocrine Prostate Cancer, Anna Testa, Fabio Quaglia, Nicole M. Naranjo, Cecilia E. Verrillo, Christopher D. Shields, Stephen Lin, Maxwell W. Pickles, Drini F. Hamza, Tami Von Schalscha, David A. Cheresh, Benjamin E Leiby, Qin Liu, Jianyi Ding, William K. Kelly, D. Craig Hooper, Eva Corey, Edward F. Plow, Dario C. Altieri, Lucia R. Languino Nov 2023

Targeting The Αvβ3/Ngr2 Pathway In Neuroendocrine Prostate Cancer, Anna Testa, Fabio Quaglia, Nicole M. Naranjo, Cecilia E. Verrillo, Christopher D. Shields, Stephen Lin, Maxwell W. Pickles, Drini F. Hamza, Tami Von Schalscha, David A. Cheresh, Benjamin E Leiby, Qin Liu, Jianyi Ding, William K. Kelly, D. Craig Hooper, Eva Corey, Edward F. Plow, Dario C. Altieri, Lucia R. Languino

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVβ3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVβ3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVβ3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in …


Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz Jun 2023

Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz

Abington Jefferson Health Papers

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and …


Ctpathway: A Crosstalk-Based Pathway Enrichment Analysis Method For Cancer Research, Haizhou Liu, Mengqin Yuan, Ramkrishna Mitra, Xu Zhou, Min Long, Wanyue Lei, Shunheng Zhou, Yu-E Huang, Fei Hou, Christine M. Eischen, Wei Jiang Oct 2022

Ctpathway: A Crosstalk-Based Pathway Enrichment Analysis Method For Cancer Research, Haizhou Liu, Mengqin Yuan, Ramkrishna Mitra, Xu Zhou, Min Long, Wanyue Lei, Shunheng Zhou, Yu-E Huang, Fei Hou, Christine M. Eischen, Wei Jiang

Department of Cancer Biology Faculty Papers

Background: Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated.

Methods: To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in …


Incorporating Pathway Information Into Feature Selection Towards Better Performed Gene Signatures, Suyan Tian, Chi Wang, Bing Wang Apr 2019

Incorporating Pathway Information Into Feature Selection Towards Better Performed Gene Signatures, Suyan Tian, Chi Wang, Bing Wang

Biostatistics Faculty Publications

To analyze gene expression data with sophisticated grouping structures and to extract hidden patterns from such data, feature selection is of critical importance. It is well known that genes do not function in isolation but rather work together within various metabolic, regulatory, and signaling pathways. If the biological knowledge contained within these pathways is taken into account, the resulting method is a pathway-based algorithm. Studies have demonstrated that a pathway-based method usually outperforms its gene-based counterpart in which no biological knowledge is considered. In this article, a pathway-based feature selection is firstly divided into three major categories, namely, pathway-level selection, …


The Mitochondrial Deoxyguanosine Kinase Is Required For Cancer Cell Stemness In Lung Adenocarcinoma, Shengchen Lin, Chongbiao Huang, Jianwei Sun, Oana Bollt, Xiuchao Wang, Eric Martine, Jiaxin Kang, Matthew D. Taylor, Bin Fang, Pankaj K. Singh, John Koomen, Jihui Hao, Shengyu Yang Jan 2019

The Mitochondrial Deoxyguanosine Kinase Is Required For Cancer Cell Stemness In Lung Adenocarcinoma, Shengchen Lin, Chongbiao Huang, Jianwei Sun, Oana Bollt, Xiuchao Wang, Eric Martine, Jiaxin Kang, Matthew D. Taylor, Bin Fang, Pankaj K. Singh, John Koomen, Jihui Hao, Shengyu Yang

Journal Articles: Eppley Institute

The mitochondrial deoxynucleotide triphosphate (dNTP) is maintained by the mitochondrial deoxynucleoside salvage pathway and dedicated for the mtDNA homeostasis, and the mitochondrial deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme in this pathway. Here, we investigated the role of the DGUOK in the self-renewal of lung cancer stem-like cells (CSC). Our data support that DGUOK overexpression strongly correlates with cancer progression and patient survival. The depletion of DGUOK robustly inhibited lung adenocarcinoma tumor growth, metastasis, and CSC self-renewal. Mechanistically, DGUOK is required for the biogenesis of respiratory complex I and mitochondrial OXPHOS, which in turn regulates CSC self-renewal through AMPK-YAP1 signaling. …


Mitochondrial Superoxide Disrupts The Metabolic And Epigenetic Landscape Of Cd4, Cassandra M. Moshfegh, Christopher W. Collins, Venugopal Gunda, A. Vasanthakumar, J. Z. Cao, Pankaj K. Singh, L. A. Godley, Adam J. Case Jan 2019

Mitochondrial Superoxide Disrupts The Metabolic And Epigenetic Landscape Of Cd4, Cassandra M. Moshfegh, Christopher W. Collins, Venugopal Gunda, A. Vasanthakumar, J. Z. Cao, Pankaj K. Singh, L. A. Godley, Adam J. Case

Journal Articles: Eppley Institute

While the role of mitochondrial metabolism in controlling T-lymphocyte activation and function is becoming more clear, the specifics of how mitochondrial redox signaling contributes to T-lymphocyte regulation remains elusive. Here, we examined the global effects of elevated mitochondrial superoxide (O2-) on T-lymphocyte activation using a novel model of inducible manganese superoxide dismutase (MnSOD) knock-out. Loss of MnSOD led to specific increases in mitochondrial O2- with no evident changes in hydrogen peroxide (H2O2), peroxynitrite (ONOO-), or copper/zinc superoxide dismutase (CuZnSOD) levels. Unexpectedly, both mitochondrial and glycolytic metabolism showed significant reductions …


Neurotensin Receptor 3/Sortilin Contributes To Tumorigenesis Of Neuroendocrine Tumors Through Augmentation Of Cell Adhesion And Migration, Ji Tae Kim, Dana L. Napier, Heidi L. Weiss, Eun Y. Lee, Courtney M. Townsend, B. Mark Evers Feb 2018

Neurotensin Receptor 3/Sortilin Contributes To Tumorigenesis Of Neuroendocrine Tumors Through Augmentation Of Cell Adhesion And Migration, Ji Tae Kim, Dana L. Napier, Heidi L. Weiss, Eun Y. Lee, Courtney M. Townsend, B. Mark Evers

Markey Cancer Center Faculty Publications

Neurotensin (NTS), a 13–amino acid peptide which is distributed predominantly along gastrointestinal tract, has multiple physiologic and pathologic functions, and its effects are mediated by three distinct NTS receptors (NTSRs). Overexpression and activation of NTS signaling components, especially NTS and/or NTSR1, are closely linked with cancer progression and metastasis in various types of cancers including neuroendocrine tumors (NETs). Although deregulation of NTSR3/sortilin has been implicated in a variety of human diseases, the expression and role of NTSR3/sortilin in NETs have not been elucidated. In this study, we investigated the expression and oncogenic effect of NTSR3/sortilin in NETs. Increased protein levels …


Nadph Oxidase 5 (Nox5)-Induced Reactive Oxygen Signaling Modulates Normoxic Hif-1Α And P27, Smitha Antony, Guojian Jiang, Yongzhong Wu, Jennifer L Meitzler, Hala R Makhlouf, Diana C Haines, Donna Butcher, Dave S B Hoon, Jiuping Ji, Yiping Zhang, Agnes Juhasz, Jiamo Lu, Han Liu, Iris Dahan, Mariam Konate, Krishnendu K Roy, James H Doroshow Dec 2017

Nadph Oxidase 5 (Nox5)-Induced Reactive Oxygen Signaling Modulates Normoxic Hif-1Α And P27, Smitha Antony, Guojian Jiang, Yongzhong Wu, Jennifer L Meitzler, Hala R Makhlouf, Diana C Haines, Donna Butcher, Dave S B Hoon, Jiuping Ji, Yiping Zhang, Agnes Juhasz, Jiamo Lu, Han Liu, Iris Dahan, Mariam Konate, Krishnendu K Roy, James H Doroshow

Articles, Abstracts, and Reports

NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased …


Epigenetic Regulation Of Kpc1 Ubiquitin Ligase Affects The Nf-Κb Pathway In Melanoma., Yuuki Iida, Aaron Ciechanover, Diego M Marzese, Keisuke Hata, Matias Bustos, Shigeshi Ono, Jinhua Wang, Matthew P Salomon, Kevin Tran, Stella Lam, Sandy Hsu, Nellie Nelson, Yelena Kravtsova-Ivantsiv, Gordon B Mills, Michael A Davies, Dave S B Hoon Aug 2017

Epigenetic Regulation Of Kpc1 Ubiquitin Ligase Affects The Nf-Κb Pathway In Melanoma., Yuuki Iida, Aaron Ciechanover, Diego M Marzese, Keisuke Hata, Matias Bustos, Shigeshi Ono, Jinhua Wang, Matthew P Salomon, Kevin Tran, Stella Lam, Sandy Hsu, Nellie Nelson, Yelena Kravtsova-Ivantsiv, Gordon B Mills, Michael A Davies, Dave S B Hoon

Articles, Abstracts, and Reports

Purpose: Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-κB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA …


A Tnf-Jnk-Axl-Erk Signaling Axis Mediates Primary Resistance To Egfr Inhibition In Glioblastoma., Gao Guo, Ke Gong, Sonia Ali, Neha Ali, Shahzad Shallwani, Kimmo J Hatanpaa, Edward Pan, Bruce Mickey, Sandeep Burma, David H Wang, Santosh Kesari, Jann N Sarkaria, Dawen Zhao, Amyn A Habib Aug 2017

A Tnf-Jnk-Axl-Erk Signaling Axis Mediates Primary Resistance To Egfr Inhibition In Glioblastoma., Gao Guo, Ke Gong, Sonia Ali, Neha Ali, Shahzad Shallwani, Kimmo J Hatanpaa, Edward Pan, Bruce Mickey, Sandeep Burma, David H Wang, Santosh Kesari, Jann N Sarkaria, Dawen Zhao, Amyn A Habib

Articles, Abstracts, and Reports

Aberrant epidermal growth factor receptor (EGFR) signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased tumor necrosis factor (TNF) secretion, which leads to activation in …


Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio Jul 2017

Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio

Markey Cancer Center Faculty Publications

Loss‐of‐function melanocortin 1 receptor (MC1R) polymorphisms are common in UV‐sensitive fair‐skinned individuals and are associated with blunted cAMP second messenger signalling and higher lifetime risk of melanoma because of diminished ability of melanocytes to cope with UV damage. cAMP signalling positions melanocytes to resist UV injury by upregulating synthesis of UV‐blocking eumelanin pigment and by enhancing the repair of UV‐induced DNA damage. cAMP enhances melanocyte nucleotide excision repair (NER), the genome maintenance pathway responsible for the removal of mutagenic UV photolesions, through cAMP‐activated protein kinase (protein kinase A)‐mediated phosphorylation of the ataxia telangiectasia‐mutated and Rad3‐related (ATR) protein on the S435 …


Cyclin D1 Restrains Oncogene-Induced Autophagy By Regulating The Ampk-Lkb1 Signaling Axis., Mathew C. Casimiro, Gabriele Disante, Agnese Di Rocco, Emanuele Loro, Claudia Pupo, Timothy G. Pestell, Sara Bisetto, Marco A. Velasco-Velázquez, Xuanmao Jiao, Zhiping Li, Christine M. Kusminski, Erin L. Seifert, Chenguang Wang, Daniel Ly, Bin Zheng, Che-Hung Shen, Philipp E. Scherer, Richard Pestell Jul 2017

Cyclin D1 Restrains Oncogene-Induced Autophagy By Regulating The Ampk-Lkb1 Signaling Axis., Mathew C. Casimiro, Gabriele Disante, Agnese Di Rocco, Emanuele Loro, Claudia Pupo, Timothy G. Pestell, Sara Bisetto, Marco A. Velasco-Velázquez, Xuanmao Jiao, Zhiping Li, Christine M. Kusminski, Erin L. Seifert, Chenguang Wang, Daniel Ly, Bin Zheng, Che-Hung Shen, Philipp E. Scherer, Richard Pestell

Department of Cancer Biology Faculty Papers

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 …


The Rhoj-Bad Signaling Network: An Achilles' Heel For Braf Mutant Melanomas., Rolando Ruiz, Sohail Jahid, Melissa Harris, Diego M Marzese, Francisco Espitia, Priya Vasudeva, Chi-Fen Chen, Sebastien De Feraudy, Jie Wu, Daniel L Gillen, Tatiana B Krasieva, Bruce J Tromberg, William J Pavan, Dave S B Hoon, Anand K Ganesan Jul 2017

The Rhoj-Bad Signaling Network: An Achilles' Heel For Braf Mutant Melanomas., Rolando Ruiz, Sohail Jahid, Melissa Harris, Diego M Marzese, Francisco Espitia, Priya Vasudeva, Chi-Fen Chen, Sebastien De Feraudy, Jie Wu, Daniel L Gillen, Tatiana B Krasieva, Bruce J Tromberg, William J Pavan, Dave S B Hoon, Anand K Ganesan

Articles, Abstracts, and Reports

Genes and pathways that allow cells to cope with oncogene-induced stress represent selective cancer therapeutic targets that remain largely undiscovered. In this study, we identify a RhoJ signaling pathway that is a selective therapeutic target for BRAF mutant cells. RhoJ deletion in BRAF mutant melanocytes modulates the expression of the pro-apoptotic protein BAD as well as genes involved in cellular metabolism, impairing nevus formation, cellular transformation, and metastasis. Short-term treatment of nascent melanoma tumors with PAK inhibitors that block RhoJ signaling halts the growth of BRAF mutant melanoma tumors in vivo and induces apoptosis in melanoma cells in vitro via …


Modulation Of Bax And Mtor For Cancer Therapeutics., Rui Li, Chunyong Ding, Jun Zhang, Maohua Xie, Dongkyoo Park, Ye Ding, Guo Chen, Guojing Zhang, Melissa Gilbert-Ross, Wei Zhou, Adam I Marcus, Shi-Yong Sun, Zhuo G Chen, Gabriel L Sica, Suresh S Ramalingam, Andrew T Magis, Haian Fu, Fadlo R Khuri, Walter J Curran, Taofeek K Owonikoko, Dong M Shin, Jia Zhou, Xingming Deng Jun 2017

Modulation Of Bax And Mtor For Cancer Therapeutics., Rui Li, Chunyong Ding, Jun Zhang, Maohua Xie, Dongkyoo Park, Ye Ding, Guo Chen, Guojing Zhang, Melissa Gilbert-Ross, Wei Zhou, Adam I Marcus, Shi-Yong Sun, Zhuo G Chen, Gabriel L Sica, Suresh S Ramalingam, Andrew T Magis, Haian Fu, Fadlo R Khuri, Walter J Curran, Taofeek K Owonikoko, Dong M Shin, Jia Zhou, Xingming Deng

Articles, Abstracts, and Reports

A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 …


Dysregulated Gpcr Signaling And Therapeutic Options In Uveal Melanoma., Vivian Chua, Dominic Lapadula, Clinita Randolph, Jeffrey L. Benovic, Philip B. Wedegaertner, Andrew E. Aplin May 2017

Dysregulated Gpcr Signaling And Therapeutic Options In Uveal Melanoma., Vivian Chua, Dominic Lapadula, Clinita Randolph, Jeffrey L. Benovic, Philip B. Wedegaertner, Andrew E. Aplin

Department of Biochemistry and Molecular Biology Faculty Papers

Uveal melanoma is the most common primary intraocular malignant tumor in adults and arises from the transformation of melanocytes in the uveal tract. Even after treatment of the primary tumor, up to 50% of patients succumb to metastatic disease. The liver is the predominant organ of metastasis. There is an important need to provide effective treatment options for advanced stage uveal melanoma. To provide the preclinical basis for new treatments, it is important to understand the molecular underpinnings of the disease. Recent genomic studies have shown that mutations within components of G protein-coupled receptor (GPCR) signaling are early events associated …


Tgfβ/Smad3 Regulates Proliferation And Apoptosis Through Irs-1 Inhibition In Colon Cancer Cells., Katie L. Bailey, Ekta Agarwal, Sanjib Chowdhury, Jiangtao Luo, Michael G. Brattain, Jennifer D. Black, J. Wang Apr 2017

Tgfβ/Smad3 Regulates Proliferation And Apoptosis Through Irs-1 Inhibition In Colon Cancer Cells., Katie L. Bailey, Ekta Agarwal, Sanjib Chowdhury, Jiangtao Luo, Michael G. Brattain, Jennifer D. Black, J. Wang

Journal Articles: Eppley Institute

In this study, we have uncovered a novel crosstalk between TGFβ and IGF-1R signaling pathways. We show for the first time that expression and activation of IRS-1, an IGF-1R adaptor protein, is decreased by TGFβ/Smad3 signaling. Loss or attenuation of TGFβ activation leads to elevated expression and phosphorylation of IRS-1 in colon cancer cells, resulting in enhanced cell proliferation, decreased apoptosis and increased tumor growth in vitro and in vivo. Downregulation of IRS-1 expression reversed Smad3 knockdown-mediated oncogenic phenotypes, indicating that TGFβ/Smad3 signaling inhibits cell proliferation and increases apoptosis at least partially through the inhibition of IRS-1 expression and activation. …


Co-Targeting Hgf/Cmet Signaling With Mek Inhibitors In Metastatic Uveal Melanoma., Hanyin Cheng, Vivian Chua, Connie Liao, Timothy J. Purwin, Mizue Terai, Ken Kageyama, Michael A. Davies, Takami Sato, Andrew E. Aplin Mar 2017

Co-Targeting Hgf/Cmet Signaling With Mek Inhibitors In Metastatic Uveal Melanoma., Hanyin Cheng, Vivian Chua, Connie Liao, Timothy J. Purwin, Mizue Terai, Ken Kageyama, Michael A. Davies, Takami Sato, Andrew E. Aplin

Department of Cancer Biology Faculty Papers

Patients with metastatic uveal melanoma usually die within 1 year of diagnosis, emphasizing an urgent need to develop new treatment strategies. The liver is the most common site of metastasis. Mitogen-activated protein kinase kinase (MEK) inhibitors improve survival in V600 BRAF-mutated cutaneous melanoma patients but have limited efficacy in patients with uveal melanoma. Our previous work showed that hepatocyte growth factor (HGF) signaling elicits resistance to MEK inhibitors in metastatic uveal melanoma. In this study, we demonstrate that expression of two BH3-only family proteins, Bim-EL and Bmf, contributes to HGF-mediated resistance to MEK inhibitors. Targeting HGF/cMET signaling with LY2875358, a …


Natural Compounds Targeting Major Cell Signaling Pathways: A Novel Paradigm For Osteosarcoma Therapy., Pablo Angulo, Gaurav Kaushik, Dharmalingam Subramaniam, Prasad Dandawate, Kathleen Neville, Katherine Chastain, Shrikant Anant Jan 2017

Natural Compounds Targeting Major Cell Signaling Pathways: A Novel Paradigm For Osteosarcoma Therapy., Pablo Angulo, Gaurav Kaushik, Dharmalingam Subramaniam, Prasad Dandawate, Kathleen Neville, Katherine Chastain, Shrikant Anant

Manuscripts, Articles, Book Chapters and Other Papers

Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems …


Proteoglycan Neofunctions: Regulation Of Inflammation And Autophagy In Cancer Biology., Liliana Schaefer, Claudia Tredup, Maria A. Gubbiotti, Renato V. Iozzo Jan 2017

Proteoglycan Neofunctions: Regulation Of Inflammation And Autophagy In Cancer Biology., Liliana Schaefer, Claudia Tredup, Maria A. Gubbiotti, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which …


Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada Jan 2017

Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada

Manuscripts, Articles, Book Chapters and Other Papers

The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation …


Foxc1 Is Associated With Estrogen Receptor Alpha And Affects Sensitivity Of Tamoxifen Treatment In Breast Cancer., Jinhua Wang, Yali Xu, Li Li, Lin Wang, Ru Yao, Qiang Sun, Guanhua Du Jan 2017

Foxc1 Is Associated With Estrogen Receptor Alpha And Affects Sensitivity Of Tamoxifen Treatment In Breast Cancer., Jinhua Wang, Yali Xu, Li Li, Lin Wang, Ru Yao, Qiang Sun, Guanhua Du

Articles, Abstracts, and Reports

FOXC1 is a member of Forkhead box transcription factors that participates in embryonic development and tumorigenesis. Our previous study demonstrated that FOXC1 was highly expressed in triple-negative breast cancer. However, it remains unclear what is the relation between FOXC1 and ERα and if FOXC1 regulates expression of ERα. To explore relation between FOXC1 and ERα and discover regulation of ERα expression by FOXC1 in breast cancer, we analyzed data assembled in the Oncomine and TCGA, and found that there was significantly higher FOXC1 expression in estrogen receptor-negative breast cancer than that in estrogen receptor-positive breast cancer. Overexpression of FOXC1 reduced …


V-Src Oncogene Induces Trop2 Proteolytic Activation Via Cyclin D1., Xiaoming Ju, Xuanmao Jiao, Adam Ertel, Mathew C. Casimiro, Gabriele Disante, Shengqiong Deng, Zhiping Li, Agnese Di Rocco, Tingting Zhan, Adam Hawkins, Tanya Stoyanova, Sebastiano Andò, Alessandro Fatatis, Michael P. Lisanti, Leonard G. Gomella, Lucia R. Languino, Richard G. Pestell Nov 2016

V-Src Oncogene Induces Trop2 Proteolytic Activation Via Cyclin D1., Xiaoming Ju, Xuanmao Jiao, Adam Ertel, Mathew C. Casimiro, Gabriele Disante, Shengqiong Deng, Zhiping Li, Agnese Di Rocco, Tingting Zhan, Adam Hawkins, Tanya Stoyanova, Sebastiano Andò, Alessandro Fatatis, Michael P. Lisanti, Leonard G. Gomella, Lucia R. Languino, Richard G. Pestell

Department of Cancer Biology Faculty Papers

Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of Src tyrosine kinase activity in approximately 90% of patients. Src is known to induce cyclin D1, and a cyclin D1-regulated gene expression module predicts poor outcome in human prostate cancer. The tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1) is enriched in the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 intracellular domain (Trop2 ICD). Herein, v-Src transformation of primary murine prostate epithelial cells increased the proportion of prostate cancer stem cells as characterized by gene expression, …


Mitochondrial Akt Regulation Of Hypoxic Tumor Reprogramming., Young Chan Chae, Valentina Vaira, M. Cecilia Caino, Hsin-Yao Tang, Jae Ho Seo, Andrew V. Kossenkov, Luisa Ottobrini, Cristina Martelli, Giovanni Lucignani, Irene Bertolini, Marco Locatelli, Kelly G. Bryant, Jagadish C. Ghosh, Sofia Lisanti, Bonsu Ku, Silvano Bosari, Lucia R. Languino, David W. Speicher, Dario C. Altieri Aug 2016

Mitochondrial Akt Regulation Of Hypoxic Tumor Reprogramming., Young Chan Chae, Valentina Vaira, M. Cecilia Caino, Hsin-Yao Tang, Jae Ho Seo, Andrew V. Kossenkov, Luisa Ottobrini, Cristina Martelli, Giovanni Lucignani, Irene Bertolini, Marco Locatelli, Kelly G. Bryant, Jagadish C. Ghosh, Sofia Lisanti, Bonsu Ku, Silvano Bosari, Lucia R. Languino, David W. Speicher, Dario C. Altieri

Department of Cancer Biology Faculty Papers

Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.


Integrated Molecular Pathway Analysis Informs A Synergistic Combination Therapy Targeting Pten/Pi3k And Egfr Pathways For Basal-Like Breast Cancer, Qing-Bai She, Sofia K. Gruvberger-Saal, Matthew Maurer, Yilun Chen, Mervi Jumppanen, Tao Su, Meaghan Dendy, Ying-Ka Ingar Lau, Lorenzo Memeo, Hugo M. Horlings, Marc J. Van De Vijver, Jorma Isola, Hanina Hibshoosh, Neal Rosen, Ramon Parsons, Lao H. Saal Aug 2016

Integrated Molecular Pathway Analysis Informs A Synergistic Combination Therapy Targeting Pten/Pi3k And Egfr Pathways For Basal-Like Breast Cancer, Qing-Bai She, Sofia K. Gruvberger-Saal, Matthew Maurer, Yilun Chen, Mervi Jumppanen, Tao Su, Meaghan Dendy, Ying-Ka Ingar Lau, Lorenzo Memeo, Hugo M. Horlings, Marc J. Van De Vijver, Jorma Isola, Hanina Hibshoosh, Neal Rosen, Ramon Parsons, Lao H. Saal

Markey Cancer Center Faculty Publications

Background: The basal-like breast cancer (BLBC) subtype is characterized by positive staining for basal mammary epithelial cytokeratin markers, lack of hormone receptor and HER2 expression, and poor prognosis with currently no approved molecularly-targeted therapies. The oncogenic signaling pathways driving basal-like tumorigenesis are not fully elucidated.

Methods: One hundred sixteen unselected breast tumors were subjected to integrated analysis of phosphoinositide 3-kinase (PI3K) pathway related molecular aberrations by immunohistochemistry, mutation analysis, and gene expression profiling. Incidence and relationships between molecular biomarkers were characterized. Findings for select biomarkers were validated in an independent series. Synergistic cell killing in vitro and in vivo tumor …


Ubr3, A Novel Modulator Of Hh Signaling Affects The Degradation Of Costal-2 And Kif7 Through Poly-Ubiquitination, Tongchao Li, Junkai Fan, Bernardo Blanco-Sánchez, Nikolaos Giagtzoglou, Guang Lin, Shinya Yamamoto, Manish Jaiswal, Kuchuan Chen, Jie Zhang, Wei Wei, Michael T. Lewis, Andrew K. Groves, Monte Westerfield, Jianhang Jia, Hugo J. Bellen May 2016

Ubr3, A Novel Modulator Of Hh Signaling Affects The Degradation Of Costal-2 And Kif7 Through Poly-Ubiquitination, Tongchao Li, Junkai Fan, Bernardo Blanco-Sánchez, Nikolaos Giagtzoglou, Guang Lin, Shinya Yamamoto, Manish Jaiswal, Kuchuan Chen, Jie Zhang, Wei Wei, Michael T. Lewis, Andrew K. Groves, Monte Westerfield, Jianhang Jia, Hugo J. Bellen

Markey Cancer Center Faculty Publications

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require …


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

Dissertations & Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced NF-κB activation …


Obesity-Induced Colorectal Cancer Is Driven By Caloric Silencing Of The Guanylin-Gucy2c Paracrine Signaling Axis., Jieru E. Lin, Francheska Colon-Gonzalez, Erik S. Blomain, Gilbert W. Kim, Amanda Aing, Brian Stoecker, Justin Rock, Adam E. Snook, Tingting Zhan, Terry M. Hyslop, Michal Tomczak, Richard S. Blumberg, Scott A. Waldman Jan 2016

Obesity-Induced Colorectal Cancer Is Driven By Caloric Silencing Of The Guanylin-Gucy2c Paracrine Signaling Axis., Jieru E. Lin, Francheska Colon-Gonzalez, Erik S. Blomain, Gilbert W. Kim, Amanda Aing, Brian Stoecker, Justin Rock, Adam E. Snook, Tingting Zhan, Terry M. Hyslop, Michal Tomczak, Richard S. Blumberg, Scott A. Waldman

Department of Pharmacology and Experimental Therapeutics Faculty Papers

Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer. Using genetically engineered mice on different diets, we found that diet-induced obesity caused a loss of guanylin expression in the colon with subsequent GUCY2C silencing, epithelial dysfunction, and tumorigenesis. Mechanistic investigations …


Phlpp Negatively Regulates Cell Motility Through Inhibition Of Akt Activity And Integrin Expression In Pancreatic Cancer Cells, Alena J. Smith, Yang-An Wen, Payton D. Stevens, Jingpeng Liu, Chi Wang, Tianyan Gao Jan 2016

Phlpp Negatively Regulates Cell Motility Through Inhibition Of Akt Activity And Integrin Expression In Pancreatic Cancer Cells, Alena J. Smith, Yang-An Wen, Payton D. Stevens, Jingpeng Liu, Chi Wang, Tianyan Gao

Markey Cancer Center Faculty Publications

Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Malignant progression of pancreatic cancer depends not only on rapid proliferation of tumor cells but also on increased cell motility. In this study, we showed that increased PHLPP expression significantly reduced the rate of migration in pancreatic ductal adenocarcinoma (PDAC) cells whereas knockdown of PHLPP had the opposite effect. In addition, cell motility at the individual cell level was negatively regulated by PHLPP as determined using time-lapse imaging. Interestingly, the expression of β1 and β4 integrin proteins were decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells …


Atp-Site Binding Inhibitor Effectively Targets Mtorc1 And Mtorc2 Complexes In Glioblastoma, Jayson Neil, Craig Shannon, Avinash Mohan, Dimitri Laurent, Raj Murali, Meena Jhanwar-Uniyal Dec 2015

Atp-Site Binding Inhibitor Effectively Targets Mtorc1 And Mtorc2 Complexes In Glioblastoma, Jayson Neil, Craig Shannon, Avinash Mohan, Dimitri Laurent, Raj Murali, Meena Jhanwar-Uniyal

NYMC Faculty Publications

The PI3K-AKT-mTOR signaling axis is central to the transformed phenotype of glioblastoma (GBM) cells, due to frequent loss of tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10). The mechanistic target of rapamycin (mTOR) kinase is present in two cellular multi-protein complexes, mTORC1 and mTORC2, which have distinct subunit composition, substrates and mechanisms of action. Targeting the mTOR protein is a promising strategy for GBM therapy. However, neither of these complexes is fully inhibited by the allosteric inhibitor of mTOR, rapamycin or its analogs. Herein, we provide evidence that the combined inhibition of mTORC1/2, using the ATP-competitive binding …


Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla Dec 2015

Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla

Journal Articles: Eppley Institute

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic …