Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla Dec 2015

Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla

Journal Articles: Eppley Institute

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic …


Active Yap Promotes Pancreatic Cancer Cell Motility, Invasion And Tumorigenesis In A Mitotic Phosphorylation-Dependent Manner Through Lpar3., Shuping Yang, Lin Zhang, Vinee Purohit, Surendra K. Shukla, Xingcheng Chen, Fang Yu, Kai Fu, Yuanhong Chen, Joyce C. Solheim, Surendra K. Shukla, Wei Song, Jixin Dong Nov 2015

Active Yap Promotes Pancreatic Cancer Cell Motility, Invasion And Tumorigenesis In A Mitotic Phosphorylation-Dependent Manner Through Lpar3., Shuping Yang, Lin Zhang, Vinee Purohit, Surendra K. Shukla, Xingcheng Chen, Fang Yu, Kai Fu, Yuanhong Chen, Joyce C. Solheim, Surendra K. Shukla, Wei Song, Jixin Dong

Journal Articles: Eppley Institute

The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. …


Invariant Characteristics Of Carcinogenesis., Simon Sherman, Nirosha Rathnayake, Tengiz Mdzinarishvili Oct 2015

Invariant Characteristics Of Carcinogenesis., Simon Sherman, Nirosha Rathnayake, Tengiz Mdzinarishvili

Journal Articles: Eppley Institute

Carcinogenic modeling is aimed at mathematical descriptions of cancer development in aging. In this work, we assumed that a small fraction of individuals in the population is susceptible to cancer, while the rest of the population is resistant to cancer. For individuals susceptible to cancer we adopted methods of conditional survival analyses. We performed computational experiments using data on pancreatic, stomach, gallbladder, colon and rectum, liver, and esophagus cancers from the gastrointestinal system collected for men and women in the SEER registries during 1975-2009. In these experiments, we estimated the time period effects, the birth cohort effects, the age effects …


Muc16-Mediated Activation Of Mtor And C-Myc Reprograms Pancreatic Cancer Metabolism., Surendra K. Shukla, Venugopal Gunda, Jaime Abrego, Dhanya Haridas, Anusha Mishra, Joshua J. Souchek, Nina V. Chaika, Fang Yu, Aaron R. Sasson, A Lazenby, Surinder K. Batra, Pankaj K. Singh Aug 2015

Muc16-Mediated Activation Of Mtor And C-Myc Reprograms Pancreatic Cancer Metabolism., Surendra K. Shukla, Venugopal Gunda, Jaime Abrego, Dhanya Haridas, Anusha Mishra, Joshua J. Souchek, Nina V. Chaika, Fang Yu, Aaron R. Sasson, A Lazenby, Surinder K. Batra, Pankaj K. Singh

Journal Articles: Eppley Institute

MUC16, a transmembrane mucin, facilitates pancreatic adenocarcinoma progression and metastasis. In the current studies, we observed that MUC16 knockdown pancreatic cancer cells exhibit reduced glucose uptake and lactate secretion along with reduced migration and invasion potential, which can be restored by supplementing the culture media with lactate, an end product of aerobic glycolysis. MUC16 knockdown leads to inhibition of mTOR activity and reduced expression of its downstream target c-MYC, a key player in cellular growth, proliferation and metabolism. Ectopic expression of c-MYC in MUC16 knockdown pancreatic cancer cells restores the altered cellular physiology. Our LC-MS/MS based metabolomics studies indicate global …


Microrna-587 Antagonizes 5-Fu-Induced Apoptosis And Confers Drug Resistance By Regulating Ppp2r1b Expression In Colorectal Cancer., Yinbo Zhang, Geoffrey Talmon, Jing Wang Aug 2015

Microrna-587 Antagonizes 5-Fu-Induced Apoptosis And Confers Drug Resistance By Regulating Ppp2r1b Expression In Colorectal Cancer., Yinbo Zhang, Geoffrey Talmon, Jing Wang

Journal Articles: Eppley Institute

Drug resistance is one of the major hurdles for cancer treatment. However, the underlying mechanisms are still largely unknown and therapeutic options remain limited. In this study, we show that microRNA (miR)-587 confers resistance to 5-fluorouracil (5-FU)-induced apoptosis in vitro and reduces the potency of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-587 modulates drug resistance through downregulation of expression of PPP2R1B, a regulatory subunit of the PP2A complex, which negatively regulates AKT activation. Knockdown of PPP2R1B expression increases AKT phosphorylation, which leads to elevated XIAP expression and enhanced …


Gentamicin Differentially Alters Cellular Metabolism Of Cochlear Hair Cells As Revealed By Nad(P)H Fluorescence Lifetime Imaging, Lyandysha V. Zholudeva, Kristina G. Ward, Michael G. Nichols, Heather Jensen Smith Jan 2015

Gentamicin Differentially Alters Cellular Metabolism Of Cochlear Hair Cells As Revealed By Nad(P)H Fluorescence Lifetime Imaging, Lyandysha V. Zholudeva, Kristina G. Ward, Michael G. Nichols, Heather Jensen Smith

Journal Articles: Eppley Institute

Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). …