Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Inhibition Of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade And Promotes Recovery After Spinal Cord Injury, Chen Guang Yu, Vimala Bondada, Hina Iqbal, Kate L. Moore, John C. Gensel, Subbarao Bondada, James W. Geddes Dec 2021

Inhibition Of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade And Promotes Recovery After Spinal Cord Injury, Chen Guang Yu, Vimala Bondada, Hina Iqbal, Kate L. Moore, John C. Gensel, Subbarao Bondada, James W. Geddes

Physiology Faculty Publications

Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib …


Oligodendrocyte Responses After Spinal Cord Injury., George Zach Wei Aug 2021

Oligodendrocyte Responses After Spinal Cord Injury., George Zach Wei

Electronic Theses and Dissertations

Recent studies demonstrate that neuroprotection strategies targeting the proteostasis network and components of its effector signaling pathways improve cell survival and motor recovery outcomes in several models of neuronal injury and degeneration. However, the individual contributions of these signaling pathways to the pathogenesis of spinal cord injury (SCI), white matter damage, and motor recovery have not yet been determined. Here, I explored the role of the HIF prolyl hydroxylase domain proteins (PHD/EGLN), effectors that can modulate stress responses activated by the proteostasis network, on motor function recovery after SCI. Furthermore, I identified previously unknown candidate mechanisms in an unbiased manner …


Acute Inflammatory Profiles Differ With Sex And Age After Spinal Cord Injury, Andrew N. Stewart, John L. Lowe, Ethan P. Glaser, Caitlin A. Mott, Ryan K. Shahidehpour, Katelyn E. Mcfarlane, William M. Bailey, Bei Zhang, John C. Gensel May 2021

Acute Inflammatory Profiles Differ With Sex And Age After Spinal Cord Injury, Andrew N. Stewart, John L. Lowe, Ethan P. Glaser, Caitlin A. Mott, Ryan K. Shahidehpour, Katelyn E. Mcfarlane, William M. Bailey, Bei Zhang, John C. Gensel

Physiology Faculty Publications

Background

Sex and age are emerging as influential variables that affect spinal cord injury (SCI) recovery. Despite a changing demographic towards older age at the time of SCI, the effects of sex or age on inflammation remain to be elucidated. This study determined the sex- and age-dependency of the innate immune response acutely after SCI.

Methods

Male and female mice of ages 4- and 14-month-old received T9 contusion SCI and the proportion of microglia, monocyte-derived macrophages (MDM), and neutrophils surrounding the lesion were determined at 3- and 7-day post-injury (DPI) using flow cytometry. Cell counts of microglia and MDMs were …


Machine Intelligence Identifies Soluble Tnfa As A Therapeutic Target For Spinal Cord Injury, J. R. Huie, A. R. Ferguson, N. Kyritsis, J. Z. Pan, K.-A. Irvine, J. L. Nielson, P. G. Schupp, M. C. Oldham, John C. Gensel, A. Lin, M. R. Segal, R. R. Ratan, J. C. Bresnahan, M. S. Beattie Feb 2021

Machine Intelligence Identifies Soluble Tnfa As A Therapeutic Target For Spinal Cord Injury, J. R. Huie, A. R. Ferguson, N. Kyritsis, J. Z. Pan, K.-A. Irvine, J. L. Nielson, P. G. Schupp, M. C. Oldham, John C. Gensel, A. Lin, M. R. Segal, R. R. Ratan, J. C. Bresnahan, M. S. Beattie

Spinal Cord and Brain Injury Research Center Faculty Publications

Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five …


Novel Influences Of Sex And Apoe Genotype On Spinal Plasticity And Recovery Of Function After Spinal Cord Injury, Lydia E. Strattan, Daimen R. Britsch, Chris M. Calulot, Rachel S. J. Maggard, Erin L. Abner, Lance A. Johnson, Warren J. Alilain Feb 2021

Novel Influences Of Sex And Apoe Genotype On Spinal Plasticity And Recovery Of Function After Spinal Cord Injury, Lydia E. Strattan, Daimen R. Britsch, Chris M. Calulot, Rachel S. J. Maggard, Erin L. Abner, Lance A. Johnson, Warren J. Alilain

Sanders-Brown Center on Aging Faculty Publications

Spinal cord injuries can abolish both motor and sensory function throughout the body. Spontaneous recovery after injury is limited and can vary substantially between individuals. Despite an abundance of therapeutic approaches that have shown promise in preclinical models, there is currently a lack of effective treatment strategies that have been translated to restore function after SCI in the human population. We hypothesized that sex and genetic background of injured individuals could impact how they respond to treatment strategies, presenting a barrier to translating therapies that are not tailored to the individual. One gene of particular interest is APOE, which has …


Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …


Novel Mammalian Models For Understanding And Treating Spinal Cord Injury, Michael B. Orr Jan 2021

Novel Mammalian Models For Understanding And Treating Spinal Cord Injury, Michael B. Orr

Theses and Dissertations--Physiology

Spinal cord injury (SCI) is devastating and often leaves the injured individual with persistent dysfunction. The injury persists because humans have poor wound repair and there are no pharmacologic treatments to induce wound repair after SCI. The continued efforts to discover therapeutic targets and develop treatments heavily relies on animal models. The purpose of this project is to develop and study novel mammalian models of SCI to provide insights for the development and effective implementation of SCI therapies.

Lab mice (Mus musculus) are a powerful tool for recapitulating the progression and persistent damage evident in human SCI, but …