Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Synlight: A Bicistronic Strategy For Simultaneous Active Zone And Cell Labeling In The Drosophila Nervous System, Michael A. Aimino, Jesse Humenik, Michael J. Parisi, Juan Carlos Duhart, Timothy J. Mosca Sep 2023

Synlight: A Bicistronic Strategy For Simultaneous Active Zone And Cell Labeling In The Drosophila Nervous System, Michael A. Aimino, Jesse Humenik, Michael J. Parisi, Juan Carlos Duhart, Timothy J. Mosca

Farber Institute for Neuroscience Faculty Papers

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent …


Membrane Compression By Synaptic Vesicle Exocytosis Triggers Ultrafast Endocytosis, Tyler H Ogunmowo, Haoyuan Jing, Sumana Raychaudhuri, Grant F Kusick, Yuuta Imoto, Shuo Li, Kie Itoh, Ye Ma, Haani Jafri, Matthew B. Dalva, Edwin R Chapman, Taekjip Ha, Shigeki Watanabe, Jian Liu May 2023

Membrane Compression By Synaptic Vesicle Exocytosis Triggers Ultrafast Endocytosis, Tyler H Ogunmowo, Haoyuan Jing, Sumana Raychaudhuri, Grant F Kusick, Yuuta Imoto, Shuo Li, Kie Itoh, Ye Ma, Haani Jafri, Matthew B. Dalva, Edwin R Chapman, Taekjip Ha, Shigeki Watanabe, Jian Liu

Department of Neuroscience Faculty Papers

Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma …


G Protein-Coupled Receptor Kinase-2 (Grk-2) Controls Exploration Through Neuropeptide Signaling In Caenorhabditis Elegans, Kristen Davis, Christo Mitchell, Olivia Weissenfels, Jihong Bai, David M. Raizen, Michael Ailion, Irini Topalidou Jan 2023

G Protein-Coupled Receptor Kinase-2 (Grk-2) Controls Exploration Through Neuropeptide Signaling In Caenorhabditis Elegans, Kristen Davis, Christo Mitchell, Olivia Weissenfels, Jihong Bai, David M. Raizen, Michael Ailion, Irini Topalidou

Department of Neuroscience Faculty Papers

Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in …