Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

Amyotrophic lateral sclerosis

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu Dec 2018

Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu

Toxicology and Cancer Biology Faculty Publications

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid–liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed …


Distinct And Shared Functions Of Als-Associated Proteins Tdp-43, Fus And Taf15 Revealed By Multisystem Analyses, Katannya Kapeli, Gabriel A. Pratt, Anthony Q. Vu, Kasey R. Hutt, Fernando J. Martinez, Balaji Sundararaman, Ranjan Batra, Peter Freese, Nicole J. Lambert, Stephanie C. Huelga, Seung J. Chun, Tiffany Y. Liang, Jeremy Chang, John P. Donohue, Lily Shiue, Jiayu Zhang, Haining Zhu, Franca Cambi, Edward J. Kasarskis, Shawn Hoon, Manuel Ares Jr., Christopher B. Burge, John Ravits, Frank Rigo, Gene W. Yeo Jul 2016

Distinct And Shared Functions Of Als-Associated Proteins Tdp-43, Fus And Taf15 Revealed By Multisystem Analyses, Katannya Kapeli, Gabriel A. Pratt, Anthony Q. Vu, Kasey R. Hutt, Fernando J. Martinez, Balaji Sundararaman, Ranjan Batra, Peter Freese, Nicole J. Lambert, Stephanie C. Huelga, Seung J. Chun, Tiffany Y. Liang, Jeremy Chang, John P. Donohue, Lily Shiue, Jiayu Zhang, Haining Zhu, Franca Cambi, Edward J. Kasarskis, Shawn Hoon, Manuel Ares Jr., Christopher B. Burge, John Ravits, Frank Rigo, Gene W. Yeo

Molecular and Cellular Biochemistry Faculty Publications

The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3′ untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor …