Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Medicine and Health Sciences

Tumor-Resident Lactobacillus Iners Confer Chemoradiation Resistance Through Lactate-Induced Metabolic Rewiring, Lauren E. Colbert, Molly B. El Alam, Rui Wang, Tatiana Karpinets, David Lo, Erica J. Lynn, Timothy A. Harris, Jacob H. Elnaggar, Kyoko Yoshida-Court, Katarina Tomasic, Julianna K. Bronk, Julie Sammouri, Ananta V. Yanamandra, Adilene V. Olvera, Lily G. Carlin, Travis Sims, Andrea Y. Delgado Medrano, Tatiana Cisneros Napravnik, Madison O'Hara, Daniel Lin, Chike O. Abana, Hannah X. Li, Patricia J. Eifel, Anuja Jhingran, Melissa Joyner, Lilie Lin, Lois M. Ramondetta, Andrew M. Futreal Oct 2023

Tumor-Resident Lactobacillus Iners Confer Chemoradiation Resistance Through Lactate-Induced Metabolic Rewiring, Lauren E. Colbert, Molly B. El Alam, Rui Wang, Tatiana Karpinets, David Lo, Erica J. Lynn, Timothy A. Harris, Jacob H. Elnaggar, Kyoko Yoshida-Court, Katarina Tomasic, Julianna K. Bronk, Julie Sammouri, Ananta V. Yanamandra, Adilene V. Olvera, Lily G. Carlin, Travis Sims, Andrea Y. Delgado Medrano, Tatiana Cisneros Napravnik, Madison O'Hara, Daniel Lin, Chike O. Abana, Hannah X. Li, Patricia J. Eifel, Anuja Jhingran, Melissa Joyner, Lilie Lin, Lois M. Ramondetta, Andrew M. Futreal

School of Medicine Faculty Publications

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other …


A Cancer Ubiquitome Landscape Identifies Metabolic Reprogramming As Target Of Parkin Tumor Suppression, Ekta Agarwal, Aaron R Goldman, Hsin-Yao Tang, Andrew V Kossenkov, Jagadish C Ghosh, Lucia Languino, Valentina Vaira, David W Speicher, Dario C Altieri Aug 2021

A Cancer Ubiquitome Landscape Identifies Metabolic Reprogramming As Target Of Parkin Tumor Suppression, Ekta Agarwal, Aaron R Goldman, Hsin-Yao Tang, Andrew V Kossenkov, Jagadish C Ghosh, Lucia Languino, Valentina Vaira, David W Speicher, Dario C Altieri

Department of Cancer Biology Faculty Papers

Changes in metabolism that affect mitochondrial and glycolytic networks are hallmarks of cancer, but their impact in disease is still elusive. Using global proteomics and ubiquitome screens, we now show that Parkin, an E3 ubiquitin ligase and key effector of mitophagy altered in Parkinson's disease, shuts off mitochondrial dynamics and inhibits the non-oxidative phase of the pentose phosphate pathway. This blocks tumor cell movements, creates metabolic and oxidative stress, and inhibits primary and metastatic tumor growth. Uniformly down-regulated in cancer patients, Parkin tumor suppression requires its E3 ligase function, is reversed by antioxidants, and is independent of mitophagy. These data …


Cyclin-Dependent Kinase Inhibitor P1446a Induces Apoptosis In A Jnk/P38 Mapk-Dependent Manner In Chronic Lymphocytic Leukemia B-Cells, Cody Paiva, J. Claire Godbersen, Ryan S. Soderquist, Taylor Rowland, Sumner Kilmarx Nov 2015

Cyclin-Dependent Kinase Inhibitor P1446a Induces Apoptosis In A Jnk/P38 Mapk-Dependent Manner In Chronic Lymphocytic Leukemia B-Cells, Cody Paiva, J. Claire Godbersen, Ryan S. Soderquist, Taylor Rowland, Sumner Kilmarx

Dartmouth Scholarship

CDK (cyclin-dependent kinase) inhibitors have shown remarkable activity in CLL, where its efficacy has been linked to inhibition of the transcriptional CDKs (7 and 9) and deregulation of RNA polymerase and short-lived pro-survival proteins such as MCL1. Furthermore, ER (endoplasmic reticulum) stress has been implicated in CDK inhibition in CLL. Here we conducted a pre-clinical study of a novel orally active kinase inhibitor P1446A in CLL B-cells. P1446A inhibited CDKs at nanomolar concentrations and induced rapid apoptosis of CLL cells in vitro, irrespective of chromosomal abnormalities or IGHV mutational status. Apoptosis preceded inactivation of RNA polymerase, and was accompanied by …


Muc16-Mediated Activation Of Mtor And C-Myc Reprograms Pancreatic Cancer Metabolism., Surendra K. Shukla, Venugopal Gunda, Jaime Abrego, Dhanya Haridas, Anusha Mishra, Joshua J. Souchek, Nina V. Chaika, Fang Yu, Aaron R. Sasson, A Lazenby, Surinder K. Batra, Pankaj K. Singh Aug 2015

Muc16-Mediated Activation Of Mtor And C-Myc Reprograms Pancreatic Cancer Metabolism., Surendra K. Shukla, Venugopal Gunda, Jaime Abrego, Dhanya Haridas, Anusha Mishra, Joshua J. Souchek, Nina V. Chaika, Fang Yu, Aaron R. Sasson, A Lazenby, Surinder K. Batra, Pankaj K. Singh

Journal Articles: Eppley Institute

MUC16, a transmembrane mucin, facilitates pancreatic adenocarcinoma progression and metastasis. In the current studies, we observed that MUC16 knockdown pancreatic cancer cells exhibit reduced glucose uptake and lactate secretion along with reduced migration and invasion potential, which can be restored by supplementing the culture media with lactate, an end product of aerobic glycolysis. MUC16 knockdown leads to inhibition of mTOR activity and reduced expression of its downstream target c-MYC, a key player in cellular growth, proliferation and metabolism. Ectopic expression of c-MYC in MUC16 knockdown pancreatic cancer cells restores the altered cellular physiology. Our LC-MS/MS based metabolomics studies indicate global …


E2f4 Regulatory Program Predicts Patient Survival Prognosis In Breast Cancer, Sari S. Khaleel, Erik H. Andrews, Matthew Ung, James Direnzo, Chao Chung Dec 2014

E2f4 Regulatory Program Predicts Patient Survival Prognosis In Breast Cancer, Sari S. Khaleel, Erik H. Andrews, Matthew Ung, James Direnzo, Chao Chung

Dartmouth Scholarship

Genetic and molecular signatures have been incorporated into cancer prognosis prediction and treatment decisions with good success over the past decade. Clinically, these signatures are usually used in early-stage cancers to evaluate whether they require adjuvant therapy following surgical resection. A molecular signature that is prognostic across more clinical contexts would be a useful addition to current signatures. We defined a signature for the ubiquitous tissue factor, E2F4, based on its shared target genes in multiple tissues. These target genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) experiments using a probabilistic method. We then computationally calculated the regulatory activity score …


Methylation Of Leukocyte Dna And Ovarian Cancer: Relationships With Disease Status And Outcome, Brooke L. Fridley, Sebastian M. Armasu, Mine S. Cicek, Melissa C. Larson, Chen Wang, Stacey J. Winham, Kimberly R. Kalli, Devin C. Koestler Apr 2014

Methylation Of Leukocyte Dna And Ovarian Cancer: Relationships With Disease Status And Outcome, Brooke L. Fridley, Sebastian M. Armasu, Mine S. Cicek, Melissa C. Larson, Chen Wang, Stacey J. Winham, Kimberly R. Kalli, Devin C. Koestler

Dartmouth Scholarship

Genome-wide interrogation of DNA methylation (DNAm) in blood-derived leukocytes has become feasible with the advent of CpG genotyping arrays. In epithelial ovarian cancer (EOC), one report found substantial DNAm differences between cases and controls; however, many of these disease-associated CpGs were attributed to differences in white blood cell type distributions. We examined blood-based DNAm in 336 EOC cases and 398 controls; we included only high-quality CpG loci that did not show evidence of association with white blood cell type distributions to evaluate association with case status and overall survival.


Id4 Deficiency Attenuates Prostate Development And Promotes Pin-Like Lesions By Regulating Androgen Receptor Activity And Expression Of Nkx3.1 And Pten, Pankaj Sharma, Ashley Knowell, Swathi Chinaranagari, Shravan Komaragiri, Peri Nagappan, Divya Patel, Mathew C. Havrda, Jaideep Chaudhary Jun 2013

Id4 Deficiency Attenuates Prostate Development And Promotes Pin-Like Lesions By Regulating Androgen Receptor Activity And Expression Of Nkx3.1 And Pten, Pankaj Sharma, Ashley Knowell, Swathi Chinaranagari, Shravan Komaragiri, Peri Nagappan, Divya Patel, Mathew C. Havrda, Jaideep Chaudhary

Dartmouth Scholarship

Background: Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods: Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was …


Pilot Study Of Cyp2b6 Genetic Variation To Explore The Contribution Of Nitrosamine Activation To Lung Carcinogenesis, Catherine Wassenaar, Qiong Dong, Christopher Amos, Margaret Spitz, Rachel F. Tyndale Apr 2013

Pilot Study Of Cyp2b6 Genetic Variation To Explore The Contribution Of Nitrosamine Activation To Lung Carcinogenesis, Catherine Wassenaar, Qiong Dong, Christopher Amos, Margaret Spitz, Rachel F. Tyndale

Dartmouth Scholarship

We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated …


Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti May 2012

Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti

Dartmouth Scholarship

Effective treatment of metastatic renal cell carcinoma (RCC) remains a major medical concern, as these tumors are refractory to standard therapies and prognosis is poor. Although molecularly targeted therapies have shown some promise in the treatment of this disease, advanced RCC tumors often develop resistance to these drugs. Dissecting the molecular mechanisms underlying the progression to advanced disease is necessary to design alternative and improved treatment strategies. Tumor-associated macrophages (TAMs) found in aggressive RCC tumors produce a variety of inflammatory cytokines, including interleukin-1 b (IL-1b). Moreover, the presence of TAMs and high serum levels of IL-1b in RCC patients correlate …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang Mar 2009

Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang

Dartmouth Scholarship

Sonic hedgehog (Shh) and components of its signalling pathway have been identified in human prostate carcinoma and increased levels of their expression appear to correlate with disease progression and metastasis. The mechanism through which Shh signalling could promote metastasis in bone, the most common site for prostate carcinoma metastasis, has not yet been investigated. The present study determined the effect of Shh signalling between prostate cancer cells and pre-osteoblasts on osteoblast differentiation, a requisite process for new bone formation that characterizes prostate carcinoma metastasis.


Inhibition Of Signal Transducer And Activator Of Transcription 3 Expression By Rna Interference Suppresses Invasion Through Inducing Anoikis In Human Colon Cancer Cells, Yu Fan, You-Li Zhang, Ying Wu, Wei Zhang, Yin-Huan Wang, Zhao-Ming Cheng, Hua Li Jan 2008

Inhibition Of Signal Transducer And Activator Of Transcription 3 Expression By Rna Interference Suppresses Invasion Through Inducing Anoikis In Human Colon Cancer Cells, Yu Fan, You-Li Zhang, Ying Wu, Wei Zhang, Yin-Huan Wang, Zhao-Ming Cheng, Hua Li

Dartmouth Scholarship

AIM: To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference.


The Nestin Progenitor Lineage Is The Compartment Of Origin For Pancreatic Intraepithelial Neoplasia, Catherine Carriere, Elliot S. Seeley, Tobias Goetze, Daniel S. Longnecker, Murray Korc Mar 2007

The Nestin Progenitor Lineage Is The Compartment Of Origin For Pancreatic Intraepithelial Neoplasia, Catherine Carriere, Elliot S. Seeley, Tobias Goetze, Daniel S. Longnecker, Murray Korc

Dartmouth Scholarship

To determine the cell compartment in which initial oncogenic mutations occur in pancreatic ductal adenocarcinoma (PDAC), we generated a mouse model in which endogenous expression of mutated Kras (Kras(G12D)) was initially directed to a population of pancreatic exocrine progenitors characterized by the expression of Nestin. Targeting of oncogenic Kras to such a restricted cell compartment was sufficient for the formation of pancreatic intraepithelial neoplasias (PanINs), putative precursors to PDAC. PanINs appeared with the same grade and frequency as observed when Kras(G12D) was targeted to the whole pancreas by a Pdx1-driven Cre recombinase strategy. Thus, the Nestin cell lineage is highly …


Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2007

Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

Cyclin E is a critical G(1)-S cell cycle regulator aberrantly expressed in bronchial premalignancy and lung cancer. Cyclin E expression negatively affects lung cancer prognosis. Its role in lung carcinogenesis was explored. Retroviral cyclin E transduction promoted pulmonary epithelial cell growth, and small interfering RNA targeting of cyclin E repressed this growth. Murine transgenic lines were engineered to mimic aberrant cyclin E expression in the lung. Wild-type and proteasome degradation-resistant human cyclin E transgenic lines were independently driven by the human surfactant C (SP-C) promoter. Chromosome instability (CIN), pulmonary dysplasia, sonic hedgehog (Shh) pathway activation, adenocarcinomas, and metastases occurred. Notably, …


Cdx4 Dysregulates Hox Gene Expression And Generates Acute Myeloid Leukemia Alone And In Cooperation With Meis1a In A Murine Model, Dimple Bansal, Claudia Scholl, Stefan Frohling, Elizabeth Mcdowell, Benjamin H. Lee, Konstanze Döhner, Patricia Ernst Nov 2006

Cdx4 Dysregulates Hox Gene Expression And Generates Acute Myeloid Leukemia Alone And In Cooperation With Meis1a In A Murine Model, Dimple Bansal, Claudia Scholl, Stefan Frohling, Elizabeth Mcdowell, Benjamin H. Lee, Konstanze Döhner, Patricia Ernst

Dartmouth Scholarship

HOX genes have emerged as critical effectors of leukemogenesis, but the mechanisms that regulate their expression in leukemia are not well understood. Recent data suggest that the caudal homeobox transcription factors CDX1, CDX2, and CDX4, developmental regulators of HOX gene expression, may contribute to HOX gene dysregulation in leukemia. We report here that CDX4 is expressed normally in early hematopoietic progenitors and is expressed aberrantly in approximately 25% of acute myeloid leukemia (AML) patient samples. Cdx4 regulates Hox gene expression in the adult murine hematopoietic system and dysregulates Hox genes that are implicated in leukemogenesis. Furthermore, bone marrow progenitors that …


Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander Nov 2005

Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander

Dartmouth Scholarship

The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican …


The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley Mar 2004

The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley

Dartmouth Scholarship

AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its …


Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2002

Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor α (RARα). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARα, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of …


Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel Mar 1986

Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel

Dartmouth Scholarship

The simian virus 40 large tumor antigen (T-ag) is found in both the nuclei (nT-ag) and plasma membranes (mT-ag) of simian virus 40-infected or -transformed cells. It is not known how newly synthesized T-ag molecules are recognized, sorted, and transported to their ultimate subcellular destinations. One possibility is that these events depend upon structural differences between nT-ag and mT-ag. To test this possibility, we compared the structures of nT-ag and mT-ag from simian virus 40-infected cells. No differences between the two forms of T-ag were detected by migration in polyacrylamide gels, by Staphylococcus aureus V8 partial proteolytic mapping of methionine- …