Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Medicine and Health Sciences

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana Dec 2014

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects …


Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …


Gaip Interacting Protein C-Terminus Regulates Autophagy And Exosome Biogenesis Of Pancreatic Cancer Through Metabolic Pathways, Santanu Bhattacharya, Krishnendu Pal, Anil K. Sharma, Shamit K. Dutta, Julie S. Lau, Irene K. Yan, Enfeng Wang, Ahmed Elkhanany, Khalid M. Alkharfy, Arunik Sanyal, Tushar C. Patel, Suresh T. Chari, Mark R. Spaller, Debabrata Mukhopadhyay Dec 2014

Gaip Interacting Protein C-Terminus Regulates Autophagy And Exosome Biogenesis Of Pancreatic Cancer Through Metabolic Pathways, Santanu Bhattacharya, Krishnendu Pal, Anil K. Sharma, Shamit K. Dutta, Julie S. Lau, Irene K. Yan, Enfeng Wang, Ahmed Elkhanany, Khalid M. Alkharfy, Arunik Sanyal, Tushar C. Patel, Suresh T. Chari, Mark R. Spaller, Debabrata Mukhopadhyay

Dartmouth Scholarship

GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular …


Cross-Disciplinary Sciences At Gettysburg College: Second Annual Poster Presentation, X-Sig Oct 2014

Cross-Disciplinary Sciences At Gettysburg College: Second Annual Poster Presentation, X-Sig

Student Publications

This booklet includes Biology student presentations by: Taylor Bury, Abigail Dworkin-Brodsky, Mary Pearce, Jasper Leavitt, Morgan Panzer, Ellen Petley, Kalli Qutub, Taylor Randell, Samantha Eck, Lana McDowell, Jenn Soroka, Celina Harris, Natalie Tanke, Alexandra Turano, and Caroline Garliss.

This booklet includes Biochemistry & Molecular Biology student presentations by: Matthew Dunworth, Andrew Sydenstricker, Brianne Tomko, Albert Vill, Warren Campbell, David Van Doren, Kevin Mrugalski, Stacey Heaver, Alecia Achimovich, and Katherine Boas.

This booklet includes Chemistry student presentations by: Kristen Baker, Laura Lee, Kathryn Fodale, Daniel Ruff, Michael Counihan, Ida DiMucci, Joshua Sgroi, Celina Harris, and Natalie Tanke.

This booklet include Health …


Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton Oct 2014

Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton

Other Undergraduate Scholarship

Research has shown that changes in gene expression play a critical role in the development of Alzheimer’s Disease (AD). Our project will evaluate genome-wide RNA expression patterns from brain and blood in an AD mouse model. This analysis will provide insight regarding the mechanisms of AD pathology as well as determine a possible diagnostic tool utilizing RNA expression patterns found in the blood as biomarkers for AD.


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki Oct 2014

The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any …


Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba Sep 2014

Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non‐protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.


Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba Sep 2014

Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacylation profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumococcal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Departmental Research

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


Investigating Propargyl-Linked Antifolates In Inhibiting Bacterial And Fungal Dihydrofolate Reductase, Joshua Andrade Aug 2014

Investigating Propargyl-Linked Antifolates In Inhibiting Bacterial And Fungal Dihydrofolate Reductase, Joshua Andrade

Honors Scholar Theses

Antimicrobial agents have been invaluable in reducing illness and death associated with bacterial infection. However, over time, bacteria have evolved resistance to all major drug classes as a result of selective pressure. The advancement of new drug compounds is therefore vital. The Anderson-Wright Lab has focused on developing potent and selective inhibitors of dihydrofolate reductase (DHFR), an enzyme key in cell proliferation and survival, in several pathogenic species. The lab has found that a set of compounds, known as propargyl-linked antifolates, are DHFR inhibitors that are both biologically effective and have strong pharmacokinetic properties.

The efficacy of novel propargyl-linked antifolates …


Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre Aug 2014

Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo . The α- and β-subunits of …


Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba Aug 2014

Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is required for the efficient synthesis of proteins with stretches of consecutive prolines and other motifs that would otherwise lead to ribosome pausing. However, previous reports also demonstrated that levels of most diprolyl-containing proteins are not altered by the deletion of efp. To define the particular sequences that trigger ribosome stalling at diprolyl (PPX) motifs, we used ribosome profiling to monitor global ribosome occupancy in Escherichia coli strains lacking EF-P. Only 2.8% of PPX motifs caused significant ribosomal pausing in the Δefp strain, with up to a 45-fold increase in ribosome density observed at …


Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba Jun 2014

Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNA) are best known for their role as adaptors during translation of the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also perform additional functions in both prokaryotes and eukaryotes for example in regulating gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosyntheses. Most recently tRNA fragments, or tRFs, have also been recognized to play regulatory roles. Here, we examine in more detail some of the new functions emerging for tRNA in a variety of cellular processes …


Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba Jun 2014

Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress …


Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba May 2014

Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, …


Molecular Chaperone Tools For Use Against Neurodegenerative Diseases, Matthew Tinkham May 2014

Molecular Chaperone Tools For Use Against Neurodegenerative Diseases, Matthew Tinkham

Senior Honors Projects

A noted characteristic found in several neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease and bovine spongiform encephalopathy, is the accumulation of amyloid plaques in the brain. Amyloid plaques contain deposits of fibrillar aggregates of misfolded proteins that disrupt normal functionality in neurons. Certain variants of these misfolded proteins are self-replicating; these self-replicating amyloids are termed prions (for infectious protein). We are interested in how protein misfolding contributes to amyloid formation and how molecular chaperone proteins can change the formation of amyloid deposits. Chaperone proteins function by catalyzing the proper folding of other proteins, the refolding of misfolded proteins, …


The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba Feb 2014

The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An ABC protein that binds the ribosomal exit site suggests a new mechanism for direct regulation of translation in response to changing ATP levels in the cell.


Leptin Regulates Cd16 Expression On Human Monocytes In A Sex-Specific Manner, Joseph G. Cannon, Gyanendra Sharma, Gloria Sloan, Christiana Dimitropoulou, R. Randall Baker, Andrew Mazzoli, Barbara Kraj, Anthony Mulloy, Miriam Cortez-Cooper Jan 2014

Leptin Regulates Cd16 Expression On Human Monocytes In A Sex-Specific Manner, Joseph G. Cannon, Gyanendra Sharma, Gloria Sloan, Christiana Dimitropoulou, R. Randall Baker, Andrew Mazzoli, Barbara Kraj, Anthony Mulloy, Miriam Cortez-Cooper

School of Medical Diagnostics & Translational Sciences Faculty Publications

Fat mass is linked mechanistically to the cardiovascular system through leptin, a 16 kDa protein produced primarily by adipocytes. In addition to increasing blood pressure via hypothalamic-sympathetic pathways, leptin stimulates monocyte migration, cytokine secretion, and other functions that contribute to atherosclerotic plaque development. These functions are also characteristics of CD16-positive monocytes that have been implicated in the clinical progression of atherosclerosis. This investigation sought to determine if leptin promoted the development of such CD16-positive monocytes. Cells from 45 healthy men and women with age ranging from 20 to 59 years were analyzed. Circulating numbers of CD14++16++ monocytes, which are primary …