Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Vitamin D3 Induces Mesenchymal-To-Endothelial Transition And Promotes A Proangiogenic Niche Through Igf-1 Signaling, Lei Chen, Anweshan Samanta, Lin Zhao, Nathaniel R. Dudley, Tanner Buehler, Robert J. Vincent, Jeryl Hauptman, Magdy Girgis, Buddhadeb Dawn Apr 2021

Vitamin D3 Induces Mesenchymal-To-Endothelial Transition And Promotes A Proangiogenic Niche Through Igf-1 Signaling, Lei Chen, Anweshan Samanta, Lin Zhao, Nathaniel R. Dudley, Tanner Buehler, Robert J. Vincent, Jeryl Hauptman, Magdy Girgis, Buddhadeb Dawn

School of Medicine Faculty Publications

Biological Sciences; Physiology; Molecular Biology; Cell Biology


In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane Jun 2020

In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane

Life Sciences Faculty Research

Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic …


A Critical Role For Kalirin In Ngf Signaling Through Trka, Kausik Chakrabarti, Rong Lin, Noraisha I. Schiller, Yanping Wang, David Koubi, Ying-Xin Fan, Brian B. Rudkin, Gibbes R. Johnson, Martin R. Schiller Jun 2005

A Critical Role For Kalirin In Ngf Signaling Through Trka, Kausik Chakrabarti, Rong Lin, Noraisha I. Schiller, Yanping Wang, David Koubi, Ying-Xin Fan, Brian B. Rudkin, Gibbes R. Johnson, Martin R. Schiller

Life Sciences Faculty Research

Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low …