Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Medicine and Health Sciences

Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor Dec 2017

Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor

Physiology Faculty Publications

Methylglyoxal (MG) is a metabolite of glucose that may contribute to peripheral neuropathy and pain in diabetic patients. MG increases intracellular calcium in sensory neurons and produces behavioral nociception via the cation channel transient receptor potential ankyrin 1 (TRPA1). However, rigorous characterization of an animal model of methylglyoxal-evoked pain is needed, including testing whether methylglyoxal promotes negative pain affect. Furthermore, it remains unknown whether methylglyoxal is sufficient to activate neurons in the spinal cord dorsal horn, whether this requires TRPA1, and if the calcium-sensitive adenylyl cyclase 1 isoform (AC1) contributes to MG-evoked pain. We administered intraplantar methylglyoxal and then evaluated …


Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee Dec 2017

Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee

Physiology Faculty Publications

Tumor necrosis factor alpha (TNFα) plays a significant role in the pathogenesis of airway inflammatory diseases. Inhalation of aerosolized TNFα induced airway hyperresponsiveness accompanied by airway inflammation in healthy human subjects, but the underlying mechanism is not fully understood. We recently reported a series of studies aimed to investigate if TNFα elevates the sensitivity of vagal bronchopulmonary sensory nerves in a mouse model; these studies are summarized in this mini-review. Our results showed that intratracheal instillation of TNFα induced pronounced airway inflammation 24 hours later, as illustrated by infiltration of eosinophils and neutrophils and the release of inflammatory mediators and …


Functional Neuroplasticity In The Nucleus Tractus Solitarius And Increased Risk Of Sudden Death In Mice With Acquired Temporal Lobe Epilepsy, Isabel D. Derera, Brian P. Delisle, Bret N. Smith Oct 2017

Functional Neuroplasticity In The Nucleus Tractus Solitarius And Increased Risk Of Sudden Death In Mice With Acquired Temporal Lobe Epilepsy, Isabel D. Derera, Brian P. Delisle, Bret N. Smith

Physiology Faculty Publications

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in individuals with refractory acquired epilepsy. Cardiorespiratory failure is the most likely cause in most cases, and central autonomic dysfunction has been implicated as a contributing factor to SUDEP. Neurons of the nucleus tractus solitarius (NTS) in the brainstem vagal complex receive and integrate vagally mediated information regarding cardiorespiratory and other autonomic functions, and GABAergic inhibitory NTS neurons play an essential role in modulating autonomic output. We assessed the activity of GABAergic NTS neurons as a function of epilepsy development in the pilocarpine-induced status epilepticus (SE) model of …


No Difference In Myosin Kinetics And Spatial Distribution Of The Lever Arm In The Left And Right Ventricles Of Human Hearts, Divya Duggal, S. Requena, Janhavi Nagwekar, Sangram Raut, Ryan Rich, Hriday Das, Vipul Patel, Ignacy Gryczynski, Rafal Fudala, Zygmunt Gryczynski, Cheavar Blair, Kenneth S. Campbell, Julian Borejdo Oct 2017

No Difference In Myosin Kinetics And Spatial Distribution Of The Lever Arm In The Left And Right Ventricles Of Human Hearts, Divya Duggal, S. Requena, Janhavi Nagwekar, Sangram Raut, Ryan Rich, Hriday Das, Vipul Patel, Ignacy Gryczynski, Rafal Fudala, Zygmunt Gryczynski, Cheavar Blair, Kenneth S. Campbell, Julian Borejdo

Physiology Faculty Publications

The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. …


Brain Injury-Induced Synaptic Reorganization In Hilar Inhibitory Neurons Is Differentially Suppressed By Rapamycin, Corwin R. Butler, Jeffery A. Boychuk, Bret N. Smith Sep 2017

Brain Injury-Induced Synaptic Reorganization In Hilar Inhibitory Neurons Is Differentially Suppressed By Rapamycin, Corwin R. Butler, Jeffery A. Boychuk, Bret N. Smith

Physiology Faculty Publications

Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in …


Stress Increases Peripheral Axon Growth And Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs, Jessica K. Lerch, Jessica K. Alexander, Kathryn M. Madalena, Dario Motti, Tam Quach, Akhil Dhamija, Alicia Zha, John C. Gensel, Jeanette Webster Marketon, Vance P. Lemmon, John L. Bixby, Phillip G. Popovich Aug 2017

Stress Increases Peripheral Axon Growth And Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs, Jessica K. Lerch, Jessica K. Alexander, Kathryn M. Madalena, Dario Motti, Tam Quach, Akhil Dhamija, Alicia Zha, John C. Gensel, Jeanette Webster Marketon, Vance P. Lemmon, John L. Bixby, Phillip G. Popovich

Physiology Faculty Publications

Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult …


Outcomes Of Spatially Fractionated Radiotherapy (Grid) For Bulky Soft Tissue Sarcomas In A Large Animal Model, Michael W. Nolan, Tracy L. Gieger, Alexander A. Karakashian, Mariana N. Nikolova‑Karakashian, Lysa P. Posner, Donald M. Roback, Judith N. Rivera, Sha Chang Jun 2017

Outcomes Of Spatially Fractionated Radiotherapy (Grid) For Bulky Soft Tissue Sarcomas In A Large Animal Model, Michael W. Nolan, Tracy L. Gieger, Alexander A. Karakashian, Mariana N. Nikolova‑Karakashian, Lysa P. Posner, Donald M. Roback, Judith N. Rivera, Sha Chang

Physiology Faculty Publications

GRID directs alternating regions of high- and low-dose radiation at tumors. A large animal model mimicking the geometries of human treatments is needed to complement existing rodent systems (eg, microbeam) and clarify the physical and biological attributes of GRID. A pilot study was undertaken in pet dogs with spontaneous soft tissue sarcomas to characterize responses to GRID. Subjects were treated with either 20 Gy (3 dogs) or 25 Gy (3 dogs), delivered using 6 MV X-rays and a commercial GRID collimator. Acute toxicity and tumor responses were assessed 2, 4, and 6 weeks later. Acute Radiation Therapy Oncology Group grade …


Disulfide High Mobility Group Box-1 Causes Bladder Pain Through Bladder Toll-Like Receptor 4, Fei Ma, Dimitrios E. Kouzoukas, Katherine L. Meyer-Siegler, Karin N. Westlund, David E. Hunt, Pedro L. Vera May 2017

Disulfide High Mobility Group Box-1 Causes Bladder Pain Through Bladder Toll-Like Receptor 4, Fei Ma, Dimitrios E. Kouzoukas, Katherine L. Meyer-Siegler, Karin N. Westlund, David E. Hunt, Pedro L. Vera

Physiology Faculty Publications

Background: Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in …


Pharmacology, Pharmacokinetics, And Metabolism Of The Dna-Decoy Ayx1 For The Prevention Of Acute And Chronic Post-Surgical Pain, Julien Mamet, Scott Harris, Michael Klukinov, David C. Yeomans, Renee R. Donahue, Bradley K. Taylor, Kelly Eddinger, Tony Yaksh, Donald C. Manning Apr 2017

Pharmacology, Pharmacokinetics, And Metabolism Of The Dna-Decoy Ayx1 For The Prevention Of Acute And Chronic Post-Surgical Pain, Julien Mamet, Scott Harris, Michael Klukinov, David C. Yeomans, Renee R. Donahue, Bradley K. Taylor, Kelly Eddinger, Tony Yaksh, Donald C. Manning

Physiology Faculty Publications

Background: AYX1 is an unmodified DNA-decoy designed to reduce acute post-surgical pain and its chronification with a single intrathecal dose at the time of surgery. AYX1 inhibits the transcription factor early growth response protein 1, which is transiently induced at the time of injury and triggers gene regulation in the dorsal root ganglia and spinal cord that leads to long-term sensitization and pain. This work characterizes the AYX1 dose-response profile in rats and the link to AYX1 pharmacokinetics and metabolism in the cerebrospinal fluid, dorsal root ganglia, and spinal cord.

Results: The effects of ascending dose-levels of AYX1 on mechanical …


Apolipoprotein E4 And Insulin Resistance Interact To Impair Cognition And Alter The Epigenome And Metabolome, Lance A. Johnson, Eileen Ruth S. Torres, Soren Impey, Jan F. Stevens, Jacob Raber Mar 2017

Apolipoprotein E4 And Insulin Resistance Interact To Impair Cognition And Alter The Epigenome And Metabolome, Lance A. Johnson, Eileen Ruth S. Torres, Soren Impey, Jan F. Stevens, Jacob Raber

Physiology Faculty Publications

Apolipoprotein E4 (E4) and type 2 diabetes are major risk factors for cognitive decline and late onset Alzheimer’s disease (AD). E4-associated phenotypes and insulin resistance (IR) share several features and appear to interact in driving cognitive dysfunction. However, shared mechanisms that could explain their overlapping pathophysiology have yet to be found. We hypothesized that, compared to E3 mice, E4 mice would be more susceptible to the harmful cognitive effects of high fat diet (HFD)-induced IR due to apoE isoform-specific differences in brain metabolism. While both E3 and E4 mice fed HFD displayed impairments in peripheral metabolism and cognition, deficits in …


Myocardial Relaxation Is Accelerated By Fast Stretch, Not Reduced Afterload, Charles S. Chung, Charles W. Hoopes, Kenneth S. Campbell Feb 2017

Myocardial Relaxation Is Accelerated By Fast Stretch, Not Reduced Afterload, Charles S. Chung, Charles W. Hoopes, Kenneth S. Campbell

Physiology Faculty Publications

Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic function. Recently published research studying mechanisms that modulate the relaxation rate has focused on molecular factors. Mechanical factors have received less attention since the 1980s when seminal work established the theory that reducing afterload accelerates the relaxation rate. Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols that suggest reducing afterload accelerates the relaxation rate and identified that myocardial relengthening was a potential confounding factor. We hypothesized that the …


Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo Jan 2017

Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo

Physiology Faculty Publications

The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are …