Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Ms4a4b, A Cd20 Homologue In T Cells, Inhibits T Cell Propagation By Modulation Of Cell Cycle., Hui Xu, Yaping Yan, Mark S Williams, Gregory B Carey, Jingxian Yang, Hongmei Li, Guang-Xian Zhang, Abdolmohamad Rostami Nov 2010

Ms4a4b, A Cd20 Homologue In T Cells, Inhibits T Cell Propagation By Modulation Of Cell Cycle., Hui Xu, Yaping Yan, Mark S Williams, Gregory B Carey, Jingxian Yang, Hongmei Li, Guang-Xian Zhang, Abdolmohamad Rostami

Department of Neurology Faculty Papers

MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural …


Methylglyoxal Increases Cardiomyocyte Ischemia-Reperfusion Injury Via Glycative Inhibition Of Thioredoxin Activity., Xiaoliang Wang, Wayne B. Lau, Yue-Xing Yuan, Ya-Jing Wang, Wei Yi, Theodore A. Christopher, Bernard L. Lopez, Hui-Rong Liu, Xin-Liang Ma Aug 2010

Methylglyoxal Increases Cardiomyocyte Ischemia-Reperfusion Injury Via Glycative Inhibition Of Thioredoxin Activity., Xiaoliang Wang, Wayne B. Lau, Yue-Xing Yuan, Ya-Jing Wang, Wei Yi, Theodore A. Christopher, Bernard L. Lopez, Hui-Rong Liu, Xin-Liang Ma

Department of Emergency Medicine Faculty Papers

Diabetes mellitus (DM) is closely related to cardiovascular morbidity and mortality, but the specific molecular basis linking DM with increased vulnerability to cardiovascular injury remains incompletely understood. Methylglyoxal (MG), a precursor to advanced glycation end products (AGEs), is increased in diabetic patient plasma, but its role in diabetic cardiovascular complications is unclear. Thioredoxin (Trx), a cytoprotective molecule with antiapoptotic function, has been demonstrated to be vulnerable to glycative inhibition, but whether Trx is glycatively inhibited by MG, thus contributing to increased cardiac injury, has never been investigated. Cultured H9c2 cardiomyocytes were treated with MG (200 muM) for 6 days. The …


Cardiomyocyte-Derived Adiponectin Is Biologically Active In Protecting Against Myocardial Ischemia-Reperfusion Injury., Yajing Wang, Wayne Bond Lau, Erhe Gao, Ling Tao, Yuexing Yuan, Rong Li, Xiaoliang Wang, Walter J. Koch, Xin-Liang Ma Mar 2010

Cardiomyocyte-Derived Adiponectin Is Biologically Active In Protecting Against Myocardial Ischemia-Reperfusion Injury., Yajing Wang, Wayne Bond Lau, Erhe Gao, Ling Tao, Yuexing Yuan, Rong Li, Xiaoliang Wang, Walter J. Koch, Xin-Liang Ma

Department of Emergency Medicine Faculty Papers

Adiponectin (APN) has traditionally been viewed as an adipocyte-specific endocrine molecule with cardioprotective effects. Recent studies suggest that APN is also expressed in cardiomyocytes. However, biological significances of this locally produced APN remain completely unknown. The aim of this study was to investigate the pathological and pharmacological significance of cardiac-derived APN in cardiomyocyte pathology. Adult cardiomyocytes from wild-type littermates (WT) or gene-deficient mice were pretreated with vehicle (V) or rosiglitazone (RSG) for 6 h followed by simulated ischemia-reperfusion (SI/R, 3 h/12 h). Compared with WT cardiomyocytes, myocytes from APN knockout (APN-KO) mice sustained greater SI/R injury, evidenced by greater oxidative/nitrative …


Differential Impact Of Tumor Suppressor Pathways On Dna Damage Response And Therapy-Induced Transformation In A Mouse Primary Cell Model., A Kathleen Mcclendon, Jeffry L Dean, Adam Ertel, Erik S Knudsen Jan 2010

Differential Impact Of Tumor Suppressor Pathways On Dna Damage Response And Therapy-Induced Transformation In A Mouse Primary Cell Model., A Kathleen Mcclendon, Jeffry L Dean, Adam Ertel, Erik S Knudsen

Department of Cancer Biology Faculty Papers

The RB and p53 tumor suppressors are mediators of DNA damage response, and compound inactivation of RB and p53 is a common occurrence in human cancers. Surprisingly, their cooperation in DNA damage signaling in relation to tumorigenesis and therapeutic response remains enigmatic. In the context of individuals with heritable retinoblastoma, there is a predilection for secondary tumor development, which has been associated with the use of radiation-therapy to treat the primary tumor. Furthermore, while germline mutations of the p53 gene are critical drivers for cancer predisposition syndromes, it is postulated that extrinsic stresses play a major role in promoting varying …


Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson Jan 2010

Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson

Department of Neurosurgery Faculty Papers

BACKGROUND: Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS: GPR177, the mammalian ortholog of Drosophila …