Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

Selected Works

Komal Sodhi

2018

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Kyle Maxwell, Yanling Yan, Xiaoliang Wang, Preeya T. Shah, Asad A. Khawaja, Rebecca Martin, Tylor J. Robinette, Adee El-Hamdani, Michael W. Dodrill, Komal Sodhi, Christopher A. Drummond, Steven T. Haller, David J. Keenedy, Nader G. Abraham, Zijian Xie, Joseph I. Shapiro Md Aug 2018

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Kyle Maxwell, Yanling Yan, Xiaoliang Wang, Preeya T. Shah, Asad A. Khawaja, Rebecca Martin, Tylor J. Robinette, Adee El-Hamdani, Michael W. Dodrill, Komal Sodhi, Christopher A. Drummond, Steven T. Haller, David J. Keenedy, Nader G. Abraham, Zijian Xie, Joseph I. Shapiro Md

Komal Sodhi

We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic …


The Role Of Na/K-Atpase Signaling In Oxidative Stress Related To Obesity And Cardiovascular Disease, Krithika Srikanthan, Joseph I. Shapiro Md, Komal Sodhi Aug 2018

The Role Of Na/K-Atpase Signaling In Oxidative Stress Related To Obesity And Cardiovascular Disease, Krithika Srikanthan, Joseph I. Shapiro Md, Komal Sodhi

Komal Sodhi

Na/K-ATPase has been extensively studied for its ion pumping function, but, in the past several decades, has been identified as a scaffolding and signaling protein. Initially it was found that cardiotonic steroids (CTS) mediate signal transduction through the Na/K-ATPase and result in the generation of reactive oxygen species (ROS), which are also capable of initiating the signal cascade. However, in recent years, this Na/K-ATPase/ROS amplification loop has demonstrated significance in oxidative stress related disease states, including obesity, atherosclerosis, heart failure, uremic cardiomyopathy, and hypertension. The discovery of this novel oxidative stress signaling pathway, holds significant therapeutic