Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

Himmelfarb Health Sciences Library, The George Washington University

Medicine Faculty Publications

Cells, Cultured

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Nephron Segment-Specific Gene Expression Using Aav Vectors., Laureano D Asico, Santiago Cuevas, Xiaobo Ma, Pedro A Jose, Ines Armando, Prasad R Konkalmatt Feb 2018

Nephron Segment-Specific Gene Expression Using Aav Vectors., Laureano D Asico, Santiago Cuevas, Xiaobo Ma, Pedro A Jose, Ines Armando, Prasad R Konkalmatt

Medicine Faculty Publications

AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde …


Genetic Modification Of Human Mesenchymal Stem Cells Helps To Reduce Adiposity And Improve Glucose Tolerance In An Obese Diabetic Mouse Model., Sabyasachi Sen, Cleyton C Domingues, Carol Rouphael, Cyril Chou, Chul Kim, Nagendra Yadava Dec 2015

Genetic Modification Of Human Mesenchymal Stem Cells Helps To Reduce Adiposity And Improve Glucose Tolerance In An Obese Diabetic Mouse Model., Sabyasachi Sen, Cleyton C Domingues, Carol Rouphael, Cyril Chou, Chul Kim, Nagendra Yadava

Medicine Faculty Publications

INTRODUCTION: Human mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into fat, muscle, bone and cartilage cells. Exposure of subcutaneous abdominal adipose tissue derived AD-MSCs to high glucose (HG) leads to superoxide accumulation and up-regulation of inflammatory molecules. Our aim was to inquire how HG exposure affects MSCs differentiation and whether the mechanism is reversible.

METHODS: We exposed human adipose tissue derived MSCs to HG (25 mM) and compared it to normal glucose (NG, 5.5 mM) exposed cells at 7, 10 and 14 days. We examined mitochondrial superoxide accumulation (Mitosox-Red), cellular oxygen consumption rate (OCR, Seahorse) and gene …