Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Medicine and Health Sciences

Linoleic Acid Improves Piezo2 Dysfunction In A Mouse Model Of Angelman Syndrome, Luis O Romero, Rebeca Caires, A Kaitlyn Victor, Juanma Ramirez, Francisco J Sierra-Valdez, Patrick Walsh, Vincent Truong, Jungsoo Lee, Ugo Mayor, Lawrence T Reiter, Valeria Vásquez, Julio F Cordero-Morales Mar 2023

Linoleic Acid Improves Piezo2 Dysfunction In A Mouse Model Of Angelman Syndrome, Luis O Romero, Rebeca Caires, A Kaitlyn Victor, Juanma Ramirez, Francisco J Sierra-Valdez, Patrick Walsh, Vincent Truong, Jungsoo Lee, Ugo Mayor, Lawrence T Reiter, Valeria Vásquez, Julio F Cordero-Morales

Journal Articles

Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss …


Ifn-Γ Transforms The Transcriptomic Landscape And Triggers Myeloid Cell Hyperresponsiveness To Cause Lethal Lung Injury, Atul K. Verma, Michael Mckelvey, Md Bashir Uddin, Sunil Palani, Meng Niu, Christopher Bauer, Shengjun Shao, Keer Sun Jan 2022

Ifn-Γ Transforms The Transcriptomic Landscape And Triggers Myeloid Cell Hyperresponsiveness To Cause Lethal Lung Injury, Atul K. Verma, Michael Mckelvey, Md Bashir Uddin, Sunil Palani, Meng Niu, Christopher Bauer, Shengjun Shao, Keer Sun

Journal Articles: Pathology and Microbiology

Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease that is associated with high mortality but no specific treatment. Our understanding of initial events that trigger ARDS pathogenesis is limited. We have developed a mouse model of inflammatory lung injury by influenza and methicillin-resistant Staphylococcus aureus (MRSA) coinfection plus daily antibiotic therapy. Using this pneumonic ARDS model, here we show that IFN-γ receptor signaling drives inflammatory cytokine storm and lung tissue damage. By single-cell RNA sequencing (scRNA-seq) analysis, we demonstrate that IFN-γ signaling induces a transcriptional shift in airway immune cells, particularly by upregulating macrophage and monocyte expression of genes …


The Brief Case:, Eileen M Burd, Ahmed Babiker, Jessica K Fairley, Divya Bhamidipati, Laila E Woc-Colburn, Blaine A Mathison Dec 2020

The Brief Case:, Eileen M Burd, Ahmed Babiker, Jessica K Fairley, Divya Bhamidipati, Laila E Woc-Colburn, Blaine A Mathison

Journal Articles

No abstract provided.


Prefrontal Corticotropin-Releasing Factor (Crf) Neurons Act Locally To Modulate Frontostriatal Cognition And Circuit Function., Sofiya Hupalo, Andrea J Martin, Rebecca K Green, David M Devilbiss, Craig W Berridge Mar 2019

Prefrontal Corticotropin-Releasing Factor (Crf) Neurons Act Locally To Modulate Frontostriatal Cognition And Circuit Function., Sofiya Hupalo, Andrea J Martin, Rebecca K Green, David M Devilbiss, Craig W Berridge

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The PFC and extended frontostriatal circuitry support higher cognitive processes that guide goal-directed behavior. PFC-dependent cognitive dysfunction is a core feature of multiple psychiatric disorders. Unfortunately, a major limiting factor in the development of treatments for PFC cognitive dysfunction is our limited understanding of the neural mechanisms underlying PFC-dependent cognition. We recently demonstrated that activation of corticotropin-releasing factor (CRF) receptors in the caudal dorsomedial PFC (dmPFC) impairs higher cognitive function, as measured in a working memory task. Currently, there remains much unknown about CRF-dependent regulation of cognition, including the source of CRF for cognition-modulating receptors and the output pathways modulated …


Modified Origins Of Cortical Projections To The Superior Colliculus In The Deaf: Dispersion Of Auditory Efferents., Blake E Butler, Julia K Sunstrum, Stephen G Lomber Apr 2018

Modified Origins Of Cortical Projections To The Superior Colliculus In The Deaf: Dispersion Of Auditory Efferents., Blake E Butler, Julia K Sunstrum, Stephen G Lomber

Brain and Mind Institute Researchers' Publications

Following the loss of a sensory modality, such as deafness or blindness, crossmodal plasticity is commonly identified in regions of the cerebrum that normally process the deprived modality. It has been hypothesized that significant changes in the patterns of cortical afferent and efferent projections may underlie these functional crossmodal changes. However, studies of thalamocortical and corticocortical connections have refuted this hypothesis, instead revealing a profound resilience of cortical afferent projections following deafness and blindness. This report is the first study of cortical outputs following sensory deprivation, characterizing cortical projections to the superior colliculus in mature cats (


Disruption Of Hippocampal Multisynaptic Networks By General Anesthetics., Min-Ching Kuo, L Stan Leung Nov 2017

Disruption Of Hippocampal Multisynaptic Networks By General Anesthetics., Min-Ching Kuo, L Stan Leung

Physiology and Pharmacology Publications

BACKGROUND: Previous studies showed that synaptic transmission is affected by general anesthetics, but an anesthetic dose response in freely moving animals has not been done. The hippocampus provides a neural network for the evaluation of isoflurane and pentobarbital on multisynaptic transmission that is relevant to memory function.

METHODS: Male Long-Evans rats were implanted with multichannel and single electrodes in the hippocampus. Spontaneous local field potentials and evoked field potentials were recorded in freely behaving rats before (baseline) and after various doses of isoflurane (0.25 to 1.5%) and sodium pentobarbital (10 mg/kg intraperitoneal).

RESULTS: Monosynaptic population excitatory postsynaptic potentials at the …


Epigenetic Suppression Of Hippocampal Calbindin-D28k By Δfosb Drives Seizure-Related Cognitive Deficits., Jason C. You, Kavitha Muralidharan, Jin W. Park, Iraklis Petrof, Mark S. Pyfer, Brian F. Corbett, John J. Lafrancois, Yi Zheng, Xiaohong Zhang, Carrie A. Mohila, Daniel Yoshor, Robert A. Rissman, Eric J. Nestler, Helen E. Scharfman, Jeannie Chin Nov 2017

Epigenetic Suppression Of Hippocampal Calbindin-D28k By Δfosb Drives Seizure-Related Cognitive Deficits., Jason C. You, Kavitha Muralidharan, Jin W. Park, Iraklis Petrof, Mark S. Pyfer, Brian F. Corbett, John J. Lafrancois, Yi Zheng, Xiaohong Zhang, Carrie A. Mohila, Daniel Yoshor, Robert A. Rissman, Eric J. Nestler, Helen E. Scharfman, Jeannie Chin

Department of Neuroscience Faculty Papers

The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer's disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. …


Rabies Screen Reveals Gpe Control Of Cocaine-Triggered Plasticity., Kevin T. Beier, Christina K. Kim, Paul Hoerbelt, Lin Wai Hung, Boris D. Heifets, Katherine E. Deloach, Timothy J. Mosca, Sophie Neuner, Karl Deisseroth, Liqun Luo, Robert C. Malenka Sep 2017

Rabies Screen Reveals Gpe Control Of Cocaine-Triggered Plasticity., Kevin T. Beier, Christina K. Kim, Paul Hoerbelt, Lin Wai Hung, Boris D. Heifets, Katherine E. Deloach, Timothy J. Mosca, Sophie Neuner, Karl Deisseroth, Liqun Luo, Robert C. Malenka

Department of Neuroscience Faculty Papers

Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the …


Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan Sep 2017

Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing …


Development Of Activity In The Mouse Visual Cortex., Jing Shen, Matthew T Colonnese Nov 2016

Development Of Activity In The Mouse Visual Cortex., Jing Shen, Matthew T Colonnese

Pharmacology and Physiology Faculty Publications

No abstract provided.


Quantifying And Comparing The Pattern Of Thalamic And Cortical Projections To The Posterior Auditory Field In Hearing And Deaf Cats., Blake E Butler, Nicole Chabot, Stephen G Lomber Oct 2016

Quantifying And Comparing The Pattern Of Thalamic And Cortical Projections To The Posterior Auditory Field In Hearing And Deaf Cats., Blake E Butler, Nicole Chabot, Stephen G Lomber

Brain and Mind Institute Researchers' Publications

Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the …


A Quantitative Comparison Of The Hemispheric, Areal, And Laminar Origins Of Sensory And Motor Cortical Projections To The Superior Colliculus Of The Cat., Blake E Butler, Nicole Chabot, Stephen G Lomber Sep 2016

A Quantitative Comparison Of The Hemispheric, Areal, And Laminar Origins Of Sensory And Motor Cortical Projections To The Superior Colliculus Of The Cat., Blake E Butler, Nicole Chabot, Stephen G Lomber

Brain and Mind Institute Researchers' Publications

The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a …


Differential Modification Of Cortical And Thalamic Projections To Cat Primary Auditory Cortex Following Early- And Late-Onset Deafness., Nicole Chabot, Blake E Butler, Stephen G Lomber Oct 2015

Differential Modification Of Cortical And Thalamic Projections To Cat Primary Auditory Cortex Following Early- And Late-Onset Deafness., Nicole Chabot, Blake E Butler, Stephen G Lomber

Brain and Mind Institute Researchers' Publications

Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


Transcranial Magnetic Stimulation Of The Prefrontal Cortex In Awake Nonhuman Primates Evokes A Polysynaptic Neck Muscle Response That Reflects Oculomotor Activity At The Time Of Stimulation., Chao Gu, Brian D Corneil Oct 2014

Transcranial Magnetic Stimulation Of The Prefrontal Cortex In Awake Nonhuman Primates Evokes A Polysynaptic Neck Muscle Response That Reflects Oculomotor Activity At The Time Of Stimulation., Chao Gu, Brian D Corneil

Brain and Mind Institute Researchers' Publications

Transcranial magnetic stimulation (TMS) has emerged as an important technique in cognitive neuroscience, permitting causal inferences about the contribution of a given brain area to behavior. Despite widespread use, exactly how TMS influences neural activity throughout an interconnected network, and how such influences ultimately change behavior, remain unclear. The oculomotor system of nonhuman primates (NHPs) offers a potential animal model to bridge this gap. Here, based on results suggesting that neck muscle activity provides a sensitive indicator of oculomotor activation, we show that single pulses of TMS over the frontal eye fields (FEFs) in awake NHPs evoked rapid (within ∼25 …


Activation Of Mglur2/3 Receptors In The Ventro-Rostral Prefrontal Cortex Reverses Sensorimotor Gating Deficits Induced By Systemic Nmda Receptor Antagonists., Bridget Valsamis, Michael Chang, Marei Typlt, Susanne Schmid Feb 2014

Activation Of Mglur2/3 Receptors In The Ventro-Rostral Prefrontal Cortex Reverses Sensorimotor Gating Deficits Induced By Systemic Nmda Receptor Antagonists., Bridget Valsamis, Michael Chang, Marei Typlt, Susanne Schmid

Brain and Mind Institute Researchers' Publications

Prepulse inhibition (PPI) of acoustic startle is an operational measure of sensorimotor gating, which is disrupted in schizophrenia. NMDA receptor (NMDAR) antagonist induced PPI disruption has become an important pharmacological model for schizophrenia; however, knowledge of the underlying mechanism remains incomplete. This study examines the role of NMDAR in the caudal pontine reticular nucleus (PnC) and the medial prefrontal cortex (mPFC) in NMDARs antagonist induced PPI deficits, as well as the NMDA receptor subtypes involved. We administered the NMDA antagonist MK-801 locally into the caudal pontine reticular formation (PnC), where the PPI mediating pathway converges with the primary startle pathway, …


Intracranial Injection Of Gammagard, A Human Ivig, Modulates The Inflammatory Response Of The Brain And Lowers AΒ In App/Ps1 Mice Along A Different Time Course Than Anti-AΒ Antibodies, Tiffany L. Sudduth, Abigail Greenstein, Donna M. Wilcock Jun 2013

Intracranial Injection Of Gammagard, A Human Ivig, Modulates The Inflammatory Response Of The Brain And Lowers AΒ In App/Ps1 Mice Along A Different Time Course Than Anti-AΒ Antibodies, Tiffany L. Sudduth, Abigail Greenstein, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

Gammagard IVIg is a therapeutic approach to treat Alzheimer's disease currently in phase 3 clinical trials. Despite the reported efficacy of the approach the mechanism of action is poorly understood. We have previously shown that intracranial injection of anti-Aβ antibodies into the frontal cortex and hippocampus reveals important information regarding the time course of events once the agent is in the brain. In the current study we compared IVIg, mouse-pooled IgG, and the anti-Aβ antibody 6E10 injected intracranially into the frontal cortex and hippocampus of 7-month-old APP/PS1 mice. We established a time course of events ranging from 1 …


Resting-State Connectivity Identifies Distinct Functional Networks In Macaque Cingulate Cortex., R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, L Stan Leung, Ravi S Menon, Stefan Everling Jun 2012

Resting-State Connectivity Identifies Distinct Functional Networks In Macaque Cingulate Cortex., R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, L Stan Leung, Ravi S Menon, Stefan Everling

Physiology and Pharmacology Publications

Subregions of the cingulate cortex represent prominent intersections in the structural networks of the primate brain. The relevance of the cingulate to the structure and dynamics of large-scale networks ultimately requires a link to functional connectivity. Here, we map fine-grained functional connectivity across the complete extent of the macaque (Macaca fascicularis) cingulate cortex and delineate subdivisions pertaining to distinct identifiable networks. In particular, we identified 4 primary networks representing the functional spectrum of the cingulate: somatomotor, attention-orienting, executive, and limbic. The cingulate nodes of these networks originated from separable subfields along the rostral-to-caudal axis and were characterized by positive and …


Resting-State Connectivity Identifies Distinct Functional Networks In Macaque Cingulate Cortex., R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, L Stan Leung, Ravi S Menon, Stefan Everling Jun 2012

Resting-State Connectivity Identifies Distinct Functional Networks In Macaque Cingulate Cortex., R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, L Stan Leung, Ravi S Menon, Stefan Everling

Brain and Mind Institute Researchers' Publications

Subregions of the cingulate cortex represent prominent intersections in the structural networks of the primate brain. The relevance of the cingulate to the structure and dynamics of large-scale networks ultimately requires a link to functional connectivity. Here, we map fine-grained functional connectivity across the complete extent of the macaque (Macaca fascicularis) cingulate cortex and delineate subdivisions pertaining to distinct identifiable networks. In particular, we identified 4 primary networks representing the functional spectrum of the cingulate: somatomotor, attention-orienting, executive, and limbic. The cingulate nodes of these networks originated from separable subfields along the rostral-to-caudal axis and were characterized by positive and …


Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval Apr 2012

Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval

Dartmouth Scholarship

Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of …


Abca12-Mediated Lipid Transport And Snap29-Dependent Trafficking Of Lamellar Granules Are Crucial For Epidermal Morphogenesis In A Zebrafish Model Of Ichthyosis., Qiaoli Li, Michael Frank, Masashi Akiyama, Shiu-Ying Ho, Hiroshi Shimizu, Christine Thisse, Bernard Thisse, Eli Sprecher, Jouni Uitto Nov 2011

Abca12-Mediated Lipid Transport And Snap29-Dependent Trafficking Of Lamellar Granules Are Crucial For Epidermal Morphogenesis In A Zebrafish Model Of Ichthyosis., Qiaoli Li, Michael Frank, Masashi Akiyama, Shiu-Ying Ho, Hiroshi Shimizu, Christine Thisse, Bernard Thisse, Eli Sprecher, Jouni Uitto

Department of Dermatology and Cutaneous Biology Faculty Papers

Zebrafish (Danio rerio) can serve as a model system to study heritable skin diseases. The skin is rapidly developed during the first 5-6 days of embryonic growth, accompanied by expression of skin-specific genes. Transmission electron microscopy (TEM) of wild-type zebrafish at day 5 reveals a two-cell-layer epidermis separated from the underlying collagenous stroma by a basement membrane with fully developed hemidesmosomes. Scanning electron microscopy (SEM) reveals an ordered surface contour of keratinocytes with discrete microridges. To gain insight into epidermal morphogenesis, we have employed morpholino-mediated knockdown of the abca12 and snap29 genes, which are crucial for secretion of lipids and …


Acetate Causes Alcohol Hangover Headache In Rats., Christina R Maxwell, Rebecca Jay Spangenberg, Jan B Hoek, Stephen D Silberstein, Michael L Oshinsky Dec 2010

Acetate Causes Alcohol Hangover Headache In Rats., Christina R Maxwell, Rebecca Jay Spangenberg, Jan B Hoek, Stephen D Silberstein, Michael L Oshinsky

Department of Neurology Faculty Papers

BACKGROUND: The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache.

METHODS: We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats.

RESULTS: Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia), followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate …


Optimal Bone Strength And Mineralization Requires The Type 2 Iodothyronine Deiodinase In Osteoblasts, J. H. D. Bassett, Alan Boyde, Peter G. T. Howell, Richard H. Bassett, Thomas M. Galliford, Marta Archanco, Holly Evans, Michelle A. Lawson, Peter Croucher, Donald L. St. Germain, Valerie A. Galton, Graham R. Williams Apr 2010

Optimal Bone Strength And Mineralization Requires The Type 2 Iodothyronine Deiodinase In Osteoblasts, J. H. D. Bassett, Alan Boyde, Peter G. T. Howell, Richard H. Bassett, Thomas M. Galliford, Marta Archanco, Holly Evans, Michelle A. Lawson, Peter Croucher, Donald L. St. Germain, Valerie A. Galton, Graham R. Williams

Dartmouth Scholarship

Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3'-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone …


Programmed Death 1 Ligand Signaling Regulates The Generation Of Adaptive Foxp3+Cd4+ Regulatory T Cells, Li Wang, Kirina Pino-Lagos, Victor C. De Vries, Indira Guleria, Mohamed H. Sayegh, Randolph J. Noelle Jul 2008

Programmed Death 1 Ligand Signaling Regulates The Generation Of Adaptive Foxp3+Cd4+ Regulatory T Cells, Li Wang, Kirina Pino-Lagos, Victor C. De Vries, Indira Guleria, Mohamed H. Sayegh, Randolph J. Noelle

Dartmouth Scholarship

Although mature dendritic cells (DCs) are potent initiators of adaptive immune response, immature steady-state DCs contribute to immune tolerance. In this study, we show that ex vivo splenic DCs are capable of inducing conversion of naïve CD4(+) T cells to adaptive Foxp3(+)CD4(+) regulatory T cells (aTreg) in the presence of TGF-beta. In particular, when compared with splenic CD8alpha(-) DCs, the CD8alpha(+) DC subset were superior in inducing higher frequencies of conversion. This was not attributable to the difference in basal level of costimulation, because deficiency of CD40 or CD80/86 signaling did not diminish the differential induction of Foxp3. Conversion was …


Trk: A Neuromodulator Of Age-Specific Behavioral And Neurochemical Responses To Cocaine In Mice., Michelle Niculescu, Shane A Perrine, Jonathan S Miller, Michelle E Ehrlich, Ellen M Unterwald Jan 2008

Trk: A Neuromodulator Of Age-Specific Behavioral And Neurochemical Responses To Cocaine In Mice., Michelle Niculescu, Shane A Perrine, Jonathan S Miller, Michelle E Ehrlich, Ellen M Unterwald

Farber Institute for Neuroscience Faculty Papers

Responses to psychostimulants vary with age, but the molecular etiologies of these differences are largely unknown. The goal of the present research was to identify age-specific behavioral and molecular adaptations to cocaine and to elucidate the mechanisms involved therein. Postweanling, periadolescent, and adult male CD-1 mice were exposed to cocaine (20 mg/kg) for 7 d. The rewarding effects of cocaine were assessed, as were the response to a Trk antagonist and the regulation of dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32). Cocaine was rewarding in both periadolescent and adult mice using a conditioned place preference procedure. In contrast, postweanling mice …


Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock Jan 2008

Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock

Journal Articles

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.

RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence …


Dominance Of The Proximal Coordinate Frame In Determining The Locations Of Hippocampal Place Cell Activity During Navigation, Jennifer J Siegel, Joshua P Neunuebel, James J Knierim Jan 2008

Dominance Of The Proximal Coordinate Frame In Determining The Locations Of Hippocampal Place Cell Activity During Navigation, Jennifer J Siegel, Joshua P Neunuebel, James J Knierim

Journal Articles

The place-specific activity of hippocampal cells provides downstream structures with information regarding an animal's position within an environment and, perhaps, the location of goals within that environment. In rodents, recent research has suggested that distal cues primarily set the orientation of the spatial representation, whereas the boundaries of the behavioral apparatus determine the locations of place activity. The current study was designed to address possible biases in some previous research that may have minimized the likelihood of observing place activity bound to distal cues. Hippocampal single-unit activity was recorded from six freely moving rats as they were trained to perform …


Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance And Lead To Significant Bone Tissue Formation., Antonio Graziano, Riccardo D'Aquino, Maria Gabriella Cusella-De Angelis, Gregorio Laino, Adriano Piattelli, Maurizio Pacifici, Alfredo De Rosa, Gianpaolo Papaccio Jun 2007

Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance And Lead To Significant Bone Tissue Formation., Antonio Graziano, Riccardo D'Aquino, Maria Gabriella Cusella-De Angelis, Gregorio Laino, Adriano Piattelli, Maurizio Pacifici, Alfredo De Rosa, Gianpaolo Papaccio

Department of Orthopaedic Surgery Faculty Papers

BACKGROUND: Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear.

METHODOLOGY AND FINDINGS: In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80-120 microm in diameter and 40-100 microm in depth, which we termed primary; and (ii) smaller microcavities of 10-20 microm in diameter …


A Critical Role For The Programmed Death Ligand 1 In Fetomaternal Tolerance, Indira Guleria, Arezou Khosroshahi, Mohammed Javeed Ansari, Antje Habicht, Miyuki Azuma, Hideo Yagita, Randolph J. Noelle Jul 2005

A Critical Role For The Programmed Death Ligand 1 In Fetomaternal Tolerance, Indira Guleria, Arezou Khosroshahi, Mohammed Javeed Ansari, Antje Habicht, Miyuki Azuma, Hideo Yagita, Randolph J. Noelle

Dartmouth Scholarship

Fetal survival during gestation implies that tolerance mechanisms suppress the maternal immune response to paternally inherited alloantigens. Here we show that the inhibitory T cell costimulatory molecule, programmed death ligand 1 (PDL1), has an important role in conferring fetomaternal tolerance in an allogeneic pregnancy model. Blockade of PDL1 signaling during murine pregnancy resulted in increased rejection rates of allogeneic concepti but not syngeneic concepti. Fetal rejection was T cell


Glutamate Receptors In Perirhinal Cortex Mediate Encoding, Retrieval, And Consolidation Of Object Recognition Memory., Boyer D Winters, Timothy J Bussey Apr 2005

Glutamate Receptors In Perirhinal Cortex Mediate Encoding, Retrieval, And Consolidation Of Object Recognition Memory., Boyer D Winters, Timothy J Bussey

Brain and Mind Institute Researchers' Publications

Object recognition is consistently impaired in human amnesia and animal models thereof. Results from subjects with permanent brain damage have revealed the importance of the perirhinal cortex to object recognition memory. Here, we report evidence from rats for interdependent but distinct stages in object recognition memory (encoding, retrieval, and consolidation), which require glutamate receptor activity within perirhinal cortex. Transient blockade of AMPA receptor-mediated synaptic transmission within perirhinal cortex disrupted encoding for short- and long-term memory as well as retrieval and consolidation. In contrast, transient NMDA receptor blockade during encoding affected only long-term object recognition memory; NMDA receptor activity was also …