Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology

Department of Biochemistry and Molecular Biology Faculty Papers

Transfer

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Starvation Sensing By Mycobacterial Rela/Spot Homologue Through Constitutive Surveillance Of Translation, Yunlong Li, Soneya Majumdar, Ryan Treen, Manjuli R. Sharma, Jamie Corro, Howard B. Gamper, Swati R. Manjari, Jerome Prusa, Nilesh K. Banavali, Christina L. Stallings, Ya-Ming Hou, Rajendra K. Agrawal, Anil K. Ojha May 2023

Starvation Sensing By Mycobacterial Rela/Spot Homologue Through Constitutive Surveillance Of Translation, Yunlong Li, Soneya Majumdar, Ryan Treen, Manjuli R. Sharma, Jamie Corro, Howard B. Gamper, Swati R. Manjari, Jerome Prusa, Nilesh K. Banavali, Christina L. Stallings, Ya-Ming Hou, Rajendra K. Agrawal, Anil K. Ojha

Department of Biochemistry and Molecular Biology Faculty Papers

The stringent response, which leads to persistence of nutrient-starved mycobacteria, is induced by activation of the RelA/SpoT homolog (Rsh) upon entry of a deacylated-tRNA in a translating ribosome. However, the mechanism by which Rsh identifies such ribosomes in vivo remains unclear. Here, we show that conditions inducing ribosome hibernation result in loss of intracellular Rsh in a Clp protease-dependent manner. This loss is also observed in nonstarved cells using mutations in Rsh that block its interaction with the ribosome, indicating that Rsh association with the ribosome is important for Rsh stability. The cryo-EM structure of the Rsh-bound 70S ribosome in …


Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang Jan 2022

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang

Department of Biochemistry and Molecular Biology Faculty Papers

EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the …


Post-Transcriptional Modifications To Trna--A Response To The Genetic Code Degeneracy., Ya-Ming Hou, Wei Yang Apr 2015

Post-Transcriptional Modifications To Trna--A Response To The Genetic Code Degeneracy., Ya-Ming Hou, Wei Yang

Department of Biochemistry and Molecular Biology Faculty Papers

No abstract provided.


Amino Acid-Dependent Stability Of The Acyl Linkage In Aminoacyl-Trna., Jacob R Peacock, Ryan R Walvoord, Angela Y Chang, Marisa C Kozlowski, Ya-Ming Hou Jun 2014

Amino Acid-Dependent Stability Of The Acyl Linkage In Aminoacyl-Trna., Jacob R Peacock, Ryan R Walvoord, Angela Y Chang, Marisa C Kozlowski, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Aminoacyl-tRNAs are the biologically active substrates for peptide bond formation in protein synthesis. The stability of the acyl linkage in each aminoacyl-tRNA, formed through an ester bond that connects the amino acid carboxyl group with the tRNA terminal 3'-OH group, is thus important. While the ester linkage is the same for all aminoacyl-tRNAs, the stability of each is not well characterized, thus limiting insight into the fundamental process of peptide bond formation. Here, we show, by analysis of the half-lives of 12 of the 22 natural aminoacyl-tRNAs used in peptide bond formation, that the stability of the acyl linkage is …


Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou Sep 2013

Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the N¹ of G37 to synthesize m¹ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) …


Regulation Of Cell Death By Transfer Rna., Ya-Ming Hou, Xiaolu Yang Aug 2013

Regulation Of Cell Death By Transfer Rna., Ya-Ming Hou, Xiaolu Yang

Department of Biochemistry and Molecular Biology Faculty Papers

SIGNIFICANCE: Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death.

RECENT ADVANCES: A recent study showed that the …


Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji Jun 2010

Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji

Department of Biochemistry and Molecular Biology Faculty Papers

After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated …