Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology

Department of Biochemistry and Molecular Biology Faculty Papers

Models

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang Jan 2022

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang

Department of Biochemistry and Molecular Biology Faculty Papers

EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the …


Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon Jan 2021

Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon

Department of Biochemistry and Molecular Biology Faculty Papers

The tumor suppressor p53 integrates stress response pathways by selectively engaging one of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general, REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets (e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered. Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs by showing that key determinants of the code are embedded …


Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou Sep 2013

Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the N¹ of G37 to synthesize m¹ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) …


Protein Synthesis Factors (Rf1, Rf2, Rf3, Rrf, And Tmrna) And Peptidyl-Trna Hydrolase Rescue Stalled Ribosomes At Sense Codons., Serafín Vivanco-Domínguez, José Bueno-Martínez, Gloria León-Avila, Nobuhiro Iwakura, Akira Kaji, Hideko Kaji, Gabriel Guarneros Apr 2012

Protein Synthesis Factors (Rf1, Rf2, Rf3, Rrf, And Tmrna) And Peptidyl-Trna Hydrolase Rescue Stalled Ribosomes At Sense Codons., Serafín Vivanco-Domínguez, José Bueno-Martínez, Gloria León-Avila, Nobuhiro Iwakura, Akira Kaji, Hideko Kaji, Gabriel Guarneros

Department of Biochemistry and Molecular Biology Faculty Papers

During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of …


Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan Jun 2011

Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan

Department of Biochemistry and Molecular Biology Faculty Papers

ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts …


Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji Jun 2010

Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji

Department of Biochemistry and Molecular Biology Faculty Papers

After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated …