Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology

2009

Genetics

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Gbdr Regulates Pseudomonas Aeruginosa Plch And Pchp Transcription In Response To Choline Catabolites, Matthew J. Wargo, Tiffany C. Ho, Maegan J. Gross, Laurie A. Whittaker, Deborah A. Hogan Dec 2009

Gbdr Regulates Pseudomonas Aeruginosa Plch And Pchp Transcription In Response To Choline Catabolites, Matthew J. Wargo, Tiffany C. Ho, Maegan J. Gross, Laurie A. Whittaker, Deborah A. Hogan

Dartmouth Scholarship

Pseudomonas aeruginosa hemolytic phospholipase C, PlcH, can degrade phosphatidylcholine (PC) and sphingomyelin in eukaryotic cell membranes and extracellular PC in lung surfactant. Numerous studies implicate PlcH in P. aeruginosa virulence. The phosphorylcholine released by PlcH activity on phospholipids is hydrolyzed by a periplasmic phosphorylcholine phosphatase, PchP. Both plcH gene expression and PchP enzyme activity are positively regulated by phosphorylcholine degradation products, including glycine betaine. Here we report that the induction of plcH and pchP transcription by glycine betaine is mediated by GbdR, an AraC family transcription factor. Mutants that lack gbdR are unable to induce plcH and pchP in media …


Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung Oct 2009

Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung

Dartmouth Scholarship

Staphylococcus aureus is a remarkably adaptable organism capable of multiple modes of growth in the human host, as a part of the normal flora, as a pathogen, or as a biofilm. Many of the regulatory pathways governing these modes of growth are centered on the activities of two regulatory molecules, the DNA binding protein SarA and the regulatory RNAIII effector molecule of the agr system. Here, we describe the modulation of these regulators and their downstream target genes by SarZ, a member of the SarA/MarR family of transcriptional regulators. Transcriptional and phenotypic analyses of a sarZ mutant demonstrated that the …


Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor Sep 2009

Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is highly motile by the action of a single polar flagellum. The loss of motility reduces the infectivity of V. cholerae, demonstrating that motility is an important virulence factor. FlrC is the sigma-54-dependent positive regulator of flagellar genes. Recently, the genes VC2206 (flgP) and VC2207 (flgO) were identified as being regulated by FlrC via a microarray analysis of an flrC mutant (D. C. Morris, F. Peng, J. R. Barker, and K. E. Klose, J. Bacteriol. 190:231-239, 2008). FlgP is reported to be an outer membrane lipoprotein required for motility that functions as a colonization factor. The study reported …


Il-9 As A Mediator Of Th17-Driven Inflammatory Disease, Elizabeth C. Nowak, Casey T. Weaver, Henrietta Turner, Sakhina Begum-Haque, Burkhard Becher, Bettina Schreiner, Anthony J. Coyle, Lloyd H. Kasper, Randolph J. Noelle Jun 2009

Il-9 As A Mediator Of Th17-Driven Inflammatory Disease, Elizabeth C. Nowak, Casey T. Weaver, Henrietta Turner, Sakhina Begum-Haque, Burkhard Becher, Bettina Schreiner, Anthony J. Coyle, Lloyd H. Kasper, Randolph J. Noelle

Dartmouth Scholarship

We report that like other T cells cultured in the presence of transforming growth factor (TGF) beta, Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 and TGF-beta as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 has functional consequences in Th17-mediated inflammatory disease, we evaluated the role of IL-9 in the development and progression of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells and IL-6-producing macrophages in …


Lapd Is A Bis-(3′,5′)-Cyclic Dimeric Gmp-Binding Protein That Regulates Surface Attachment By Pseudomonas Fluorescens Pf0–1, Peter D. Newell, Russell D. Monds, George A. O'Toole Mar 2009

Lapd Is A Bis-(3′,5′)-Cyclic Dimeric Gmp-Binding Protein That Regulates Surface Attachment By Pseudomonas Fluorescens Pf0–1, Peter D. Newell, Russell D. Monds, George A. O'Toole

Dartmouth Scholarship

The second messenger cyclic dimeric GMP (c-di-GMP) regulates surface attachment and biofilm formation by many bacteria. For Pseudomonas fluorescens Pf0-1, c-di-GMP impacts the secretion and localization of the adhesin LapA, which is absolutely required for stable surface attachment and biofilm formation by this bacterium. In this study we characterize LapD, a unique c-di-GMP effector protein that controls biofilm formation by communicating intracellular c-di-GMP levels to the membrane-localized attachment machinery via its periplasmic domain. LapD contains degenerate and enzymatically inactive diguanylate cyclase and c-di-GMP phosphodiesterase (EAL) domains and binds to c-di-GMP through a degenerate EAL domain. We present evidence that LapD …


Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill Feb 2009

Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill

Dartmouth Scholarship

Staphylococcus aureus is a proficient biofilm former on host tissues and medical implants. We mutagenized S. aureus strain SH1000 to identify loci essential for ica-independent mechanisms of biofilm maturation and identified multiple insertions in the rsbUVW-sigB operon. Following construction and characterization of a sigB deletion, we determined that the biofilm phenotype was due to a lack of sigma factor B (SigB) activity. The phenotype was conserved in a sigB mutant of USA300 strain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate. We determined that agr RNAIII levels were elevated in the sigB mutants, and high levels of RNAIII expression are …