Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung Oct 2009

Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung

Dartmouth Scholarship

Staphylococcus aureus is a remarkably adaptable organism capable of multiple modes of growth in the human host, as a part of the normal flora, as a pathogen, or as a biofilm. Many of the regulatory pathways governing these modes of growth are centered on the activities of two regulatory molecules, the DNA binding protein SarA and the regulatory RNAIII effector molecule of the agr system. Here, we describe the modulation of these regulators and their downstream target genes by SarZ, a member of the SarA/MarR family of transcriptional regulators. Transcriptional and phenotypic analyses of a sarZ mutant demonstrated that the …


Modulation Of Edna Release And Degradation Affects Staphylococcus Aureus Biofilm Maturation., Ethan E. Mann, Kelly C. Rice, Blaise R. Boles, Jennifer L. Endres, Dev Ranjit, Lakshmi Chandramohan, Laura H. Tsang, Mark S. Smeltzer, Alexander R. Horswill, Kenneth W. Bayles Jun 2009

Modulation Of Edna Release And Degradation Affects Staphylococcus Aureus Biofilm Maturation., Ethan E. Mann, Kelly C. Rice, Blaise R. Boles, Jennifer L. Endres, Dev Ranjit, Lakshmi Chandramohan, Laura H. Tsang, Mark S. Smeltzer, Alexander R. Horswill, Kenneth W. Bayles

Journal Articles: Pathology and Microbiology

Recent studies have demonstrated a role for Staphylococcus aureus cidA-mediated cell lysis and genomic DNA release in biofilm adherence. The current study extends these findings by examining both temporal and additional genetic factors involved in the control of genomic DNA release and degradation during biofilm maturation. Cell lysis and DNA release were found to be critical for biofilm attachment during the initial stages of development and the released DNA (eDNA) remained an important matrix component during biofilm maturation. This study also revealed that an lrgAB mutant exhibits increased biofilm adherence and matrix-associated eDNA consistent with its proposed role as an …


Assembly And Development Of The Pseudomonas Aeruginosa Biofilm Matrix., Luyan Ma, Matthew Conover, Haiping Lu, Matthew R. Parsek, Kenneth W. Bayles, Daniel J. Wozniak Mar 2009

Assembly And Development Of The Pseudomonas Aeruginosa Biofilm Matrix., Luyan Ma, Matthew Conover, Haiping Lu, Matthew R. Parsek, Kenneth W. Bayles, Daniel J. Wozniak

Journal Articles: Pathology and Microbiology

Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize …


Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill Feb 2009

Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill

Dartmouth Scholarship

Staphylococcus aureus is a proficient biofilm former on host tissues and medical implants. We mutagenized S. aureus strain SH1000 to identify loci essential for ica-independent mechanisms of biofilm maturation and identified multiple insertions in the rsbUVW-sigB operon. Following construction and characterization of a sigB deletion, we determined that the biofilm phenotype was due to a lack of sigma factor B (SigB) activity. The phenotype was conserved in a sigB mutant of USA300 strain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate. We determined that agr RNAIII levels were elevated in the sigB mutants, and high levels of RNAIII expression are …


Interaction Between Bacteriophage Dms3 And Host Crispr Region Inhibits Group Behaviors Of Pseudomonas Aeruginosa, Michael E. Zegans, Jeffrey C. Wagner, Kyle C. Cady, Daniel M. Murphy, John H. Hammond, George A. O'Toole Jan 2009

Interaction Between Bacteriophage Dms3 And Host Crispr Region Inhibits Group Behaviors Of Pseudomonas Aeruginosa, Michael E. Zegans, Jeffrey C. Wagner, Kyle C. Cady, Daniel M. Murphy, John H. Hammond, George A. O'Toole

Dartmouth Scholarship

Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming …