Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Proteolytic Regulation Of Toxin-Antitoxin Systems By Clppc In Staphylococcus Aureus, Niles P. Donegan, Earl T. Thompson, Zhibiao Fu, Ambrose L. Cheung Dec 2009

Proteolytic Regulation Of Toxin-Antitoxin Systems By Clppc In Staphylococcus Aureus, Niles P. Donegan, Earl T. Thompson, Zhibiao Fu, Ambrose L. Cheung

Dartmouth Scholarship

Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation …


Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor Nov 2009

Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is the etiologic agent of cholera in humans. Intestinal colonization occurs in a stepwise fashion, initiating with attachment to the small intestinal epithelium. This attachment is followed by expression of the toxin-coregulated pilus, microcolony formation, and cholera toxin (CT) production. We have recently characterized a secreted attachment factor, GlcNAc binding protein A (GbpA), which functions in attachment to environmental chitin sources as well as to intestinal substrates. Studies have been initiated to define the regulatory network involved in GbpA induction. At low cell density, GbpA was detected in the culture supernatant of all wild-type (WT) strains examined. In …


Intracellular Bacteria Encode Inhibitory Snare-Like Proteins., Fabienne Paumet, Jordan Wesolowski, Alejandro Garcia-Diaz, Cedric Delevoye, Nathalie Aulner, Howard A Shuman, Agathe Subtil, James E Rothman Oct 2009

Intracellular Bacteria Encode Inhibitory Snare-Like Proteins., Fabienne Paumet, Jordan Wesolowski, Alejandro Garcia-Diaz, Cedric Delevoye, Nathalie Aulner, Howard A Shuman, Agathe Subtil, James E Rothman

Department of Microbiology and Immunology Faculty Papers

Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that …


Flagellum-Mediated Biofilm Defense Mechanisms Of Pseudomonas Aeruginosa Against Host-Derived Lactoferrin, Jeff G. Leid, Mathias Kerr, Candice Selgado, Chelsa Johnson, Gabriel Moreno, Alyssa Smith, Mark E. Shirtliff, Georg A. O'Toole, Emily K. Cope Aug 2009

Flagellum-Mediated Biofilm Defense Mechanisms Of Pseudomonas Aeruginosa Against Host-Derived Lactoferrin, Jeff G. Leid, Mathias Kerr, Candice Selgado, Chelsa Johnson, Gabriel Moreno, Alyssa Smith, Mark E. Shirtliff, Georg A. O'Toole, Emily K. Cope

Dartmouth Scholarship

Chronic infection with the gram-negative organism Pseudomonas aeruginosa is a leading cause of morbidity and mortality in human patients, despite high doses of antibiotics used to treat the various diseases this organism causes. These infections are chronic because P. aeruginosa readily forms biofilms, which are inherently resistant to antibiotics as well as the host's immune system. Our laboratory has been investigating specific mutations in P. aeruginosa that regulate biofilm bacterial susceptibility to the host. To continue our investigation of the role of genetics in bacterial biofilm host resistance, we examined P. aeruginosa biofilms that lack the flgK gene. This mutant …