Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Humans

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


Silver Oxide Coatings With High Silver-Ion Elution Rates And Characterization Of Bactericidal Activity., Sarah S Goderecci, Eric Kaiser, Michael Yanakas, Zachary Norris, Jeffrey Scaturro, Robert Oszust, Clarence D Medina, Fallon Waechter, Min Heon, Robert R Krchnavek, Lei Yu, Samuel E Lofland, Renee M Demarest, Gregory A Caputo, Jeffrey D Hettinger Sep 2017

Silver Oxide Coatings With High Silver-Ion Elution Rates And Characterization Of Bactericidal Activity., Sarah S Goderecci, Eric Kaiser, Michael Yanakas, Zachary Norris, Jeffrey Scaturro, Robert Oszust, Clarence D Medina, Fallon Waechter, Min Heon, Robert R Krchnavek, Lei Yu, Samuel E Lofland, Renee M Demarest, Gregory A Caputo, Jeffrey D Hettinger

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

This paper reports the synthesis and characterization of silver oxide films for use as bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are reported. Synthesis conditions were developed to create AgO, Ag₂O, or mixtures of AgO and Ag₂O on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many substrate materials and impede the growth of all bacterial strains tested. The coatings are effective in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic culture. Additionally, the coatings exhibit very …