Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology

University of Nebraska Medical Center

2022

Bacterial Proteins

Articles 1 - 1 of 1

Full-Text Articles in Medicine and Health Sciences

Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth Of Staphylococcus Aureus In Defined Medium Lacking Glucose And Arginine, Itidal Reslane, Cortney R. Halsey, Amanda Stastny, Barbara J. Cabrera, Jong-Sam Ahn, Dhananjay Shinde, Madeline R. Galac, Margaret F. Sladek, Fareha Razvi, Mckenzie K. Lehman, Kenneth W. Bayles, Vinai Chittezham Thomas, Luke D. Handke, Paul D. Fey Jan 2022

Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth Of Staphylococcus Aureus In Defined Medium Lacking Glucose And Arginine, Itidal Reslane, Cortney R. Halsey, Amanda Stastny, Barbara J. Cabrera, Jong-Sam Ahn, Dhananjay Shinde, Madeline R. Galac, Margaret F. Sladek, Fareha Razvi, Mckenzie K. Lehman, Kenneth W. Bayles, Vinai Chittezham Thomas, Luke D. Handke, Paul D. Fey

Journal Articles: Pathology and Microbiology

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or …