Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology

PDF

Dartmouth College

2016

Vibrio cholerae

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The Vibrio Cholerae Minor Pilin Tcpb Initiates Assembly And Retraction Of The Toxin-Coregulated Pilus, Dixon Ng, Tony Harn, Tuba Altindal, Subramania Kolappan, Jarrad Marles, Rajan Lala, Ingrid Spielman, Yang Gao, Caitlyn Hauke, Gabriela Kovacikova Dec 2016

The Vibrio Cholerae Minor Pilin Tcpb Initiates Assembly And Retraction Of The Toxin-Coregulated Pilus, Dixon Ng, Tony Harn, Tuba Altindal, Subramania Kolappan, Jarrad Marles, Rajan Lala, Ingrid Spielman, Yang Gao, Caitlyn Hauke, Gabriela Kovacikova

Dartmouth Scholarship

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent …


The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull Jan 2016

The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of Vibrionaceae. Among FadR homologues of the GntR family, the Vibrionaceae protein is unusual in that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas Escherichia coli FadR (EcFadR) contains only one acyl-CoA-binding site in each monomer, crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites resembles that of EcFadR, whereas the other, comprised residues from the insertion, has not …