Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology

PDF

Dartmouth College

2016

Pseudomonas aeruginosa

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Requirements For Pseudomonas Aeruginosa Type I-F Crispr-Cas Adaptation Determined Using A Biofilm Enrichment Assay, Gary E. Heussler, Jon L. Miller, Courtney E. Price, Alan J. Collins Aug 2016

Requirements For Pseudomonas Aeruginosa Type I-F Crispr-Cas Adaptation Determined Using A Biofilm Enrichment Assay, Gary E. Heussler, Jon L. Miller, Courtney E. Price, Alan J. Collins

Dartmouth Scholarship

CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein) systems are diverse and found in many archaea and bacteria. These systems have mainly been characterized as adaptive immune systems able to protect against invading mobile genetic elements, including viruses. The first step in this protection is acquisition of spacer sequences from the invader DNA and incorporation of those sequences into the CRISPR array, termed CRISPR adaptation. Progress in understanding the mechanisms and requirements of CRISPR adaptation has largely been accomplished using overexpression of cas genes or plasmid loss assays; little work has focused on endogenous CRISPR-acquired immunity from viral predation. …


The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan Jun 2016

The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan

Dartmouth Scholarship

Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We …