Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov Mar 2022

Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov

Department of Biochemistry and Molecular Biology Faculty Papers

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of …


Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn Jul 2021

Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn

Department of Biochemistry and Molecular Biology Faculty Papers

Alx1, a homeodomain-containing transcription factor, is a highly conserved regulator of skeletogenesis in echinoderms. In sea urchins, Alx1 plays a central role in the differentiation of embryonic primary mesenchyme cells (PMCs) and positively regulates the transcription of most biomineralization genes expressed by these cells. The alx1 gene arose via duplication and acquired a skeletogenic function distinct from its paralog (alx4) through the exonization of a 41-amino acid motif (the D2 domain). Alx1 and Alx4 contain glutamine-50 paired-type homeodomains, which interact preferentially with palindromic binding sites in vitro. Chromatin immunoprecipitation sequencing (ChIP-seq) studies have shown, however, that Alx1 binds both to …


Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon Jan 2021

Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon

Department of Biochemistry and Molecular Biology Faculty Papers

The tumor suppressor p53 integrates stress response pathways by selectively engaging one of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general, REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets (e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered. Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs by showing that key determinants of the code are embedded …


The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger Aug 2015

The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger

Department of Biochemistry and Molecular Biology Faculty Papers

Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.


Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes Feb 2012

Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

In order to investigate regulation and redundancy within the sloppy paired (slp) locus, we analyzed 30 kilobases of DNA encompassing the tandem, coordinately regulated slp1 and slp2 transcription units. We found a remarkable array of stripe enhancers with overlapping activities surrounding the slp1 transcription unit, and, unexpectedly, glial cell enhancers surrounding slp2. The slp stripe regulatory region generates 7 stripes at blastoderm, and later 14 stripes that persist throughout embryogenesis. Phylogenetic analysis among drosophilids suggests that the multiplicity of stripe enhancers did not evolve through recent duplication. Most of the direct integration among cis-regulatory modules appears to be simply additive, …


Mitochondrial Genome Sequence Analysis: A Custom Bioinformatics Pipeline Substantially Improves Affymetrix Mitochip V2.0 Call Rate And Accuracy., Hongbo M Xie, Juan C Perin, Theodore G Schurr, Matthew C Dulik, Sergey I Zhadanov, Joseph A Baur, Michael P King, Emily Place, Colleen Clarke, Michael Grauer, Jonathan Schug, Avni Santani, Anthony Albano, Cecilia Kim, Vincent Procaccio, Hakon Hakonarson, Xiaowu Gai, Marni J Falk Jan 2011

Mitochondrial Genome Sequence Analysis: A Custom Bioinformatics Pipeline Substantially Improves Affymetrix Mitochip V2.0 Call Rate And Accuracy., Hongbo M Xie, Juan C Perin, Theodore G Schurr, Matthew C Dulik, Sergey I Zhadanov, Joseph A Baur, Michael P King, Emily Place, Colleen Clarke, Michael Grauer, Jonathan Schug, Avni Santani, Anthony Albano, Cecilia Kim, Vincent Procaccio, Hakon Hakonarson, Xiaowu Gai, Marni J Falk

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: Mitochondrial genome sequence analysis is critical to the diagnostic evaluation of mitochondrial disease. Existing methodologies differ widely in throughput, complexity, cost efficiency, and sensitivity of heteroplasmy detection. Affymetrix MitoChip v2.0, which uses a sequencing-by-genotyping technology, allows potentially accurate and high-throughput sequencing of the entire human mitochondrial genome to be completed in a cost-effective fashion. However, the relatively low call rate achieved using existing software tools has limited the wide adoption of this platform for either clinical or research applications. Here, we report the design and development of a custom bioinformatics software pipeline that achieves a much improved call rate …


Cell Autonomous Expression Of Inflammatory Genes In Biologically Aged Fibroblasts Associated With Elevated Nf-Kappab Activity., Andres Kriete, Kelli L Mayo, Nirupama Yalamanchili, William Beggs, Patrick Bender, Csaba Kari, Ulrich Rodeck Jan 2008

Cell Autonomous Expression Of Inflammatory Genes In Biologically Aged Fibroblasts Associated With Elevated Nf-Kappab Activity., Andres Kriete, Kelli L Mayo, Nirupama Yalamanchili, William Beggs, Patrick Bender, Csaba Kari, Ulrich Rodeck

Department of Dermatology and Cutaneous Biology Faculty Papers

BACKGROUND: Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. RESULTS: Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains …