Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

University of Kentucky

Otolaryngology--Head & Neck Surgery Faculty Publications

Mice

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Progressive Age-Dependence And Frequency Difference In The Effect Of Gap Junctions On Active Cochlear Amplification And Hearing, Liang Zong, Jin Chen, Yan Zhu, Hong-Bo Zhao Jul 2017

Progressive Age-Dependence And Frequency Difference In The Effect Of Gap Junctions On Active Cochlear Amplification And Hearing, Liang Zong, Jin Chen, Yan Zhu, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low …


Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao Jan 2016

Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Intercellular genetic communication is an essential requirement for coordination of cell proliferation and differentiation and has an important role in many cellular processes. Gap junction channels possess large pore allowing passage of ions and small molecules between cells. MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression broadly. Here, we report that miRNAs can pass through gap junction channels in a connexin-dependent manner. Connexin43 (Cx43) had higher permeability, whereas Cx30 showed little permeability to miRNAs. In the tested connexin cell lines, the permeability to miRNAs demonstrated: Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null. However, consistent with a uniform …