Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes Dec 2014

Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes

Dissertations & Theses (Open Access)

Inflammatory breast cancer (IBC) and triple-negative breast cancer (TNBC) are two highly aggressive breast cancer subtypes associated with a poor outcome. Despite sensitivity to current treatment, these breast cancers subtypes have a high recurrence rate and proclivity to metastasize early. The aggressiveness of IBC and TNBC have been linked to CSCs and epithelial to mesenchymal transition (EMT), which are critical features of breast cancer progression and metastasis. The clinical challenge faced in the treatment of IBC and TNBC is finding a treatment strategy to target the cancer stem-like (CSC) population to block metastasis. Cyclooxygenase-2 (COX-2) and receptor activator of nuclear …


Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica E. Reyes Dec 2014

Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica E. Reyes

Dissertations & Theses (Open Access)

Inflammatory breast cancer (IBC) and triple-negative breast cancer (TNBC) are two highly aggressive breast cancer subtypes associated with a poor outcome. Despite sensitivity to current treatment, these breast cancers subtypes have a high recurrence rate and proclivity to metastasize early. The aggressiveness of IBC and TNBC have been linked to CSCs and epithelial to mesenchymal transition (EMT), which are critical features of breast cancer progression and metastasis. The clinical challenge faced in the treatment of IBC and TNBC is finding a treatment strategy to target the cancer stem-like (CSC) population to block metastasis. Cyclooxygenase-2 (COX-2) and receptor activator of nuclear …


Sustained Adrenergic Signaling Promotes Cervical Cancer Progression, Nouara C. Sadaoui Dec 2014

Sustained Adrenergic Signaling Promotes Cervical Cancer Progression, Nouara C. Sadaoui

Dissertations & Theses (Open Access)

Background: Chronic stress and sustained adrenergic signaling are known to promote tumor progression. The underlying mechanisms behind this process are not well understood. We examined the effects of sustained adrenergic signaling on cervical cancer progression through increased expression of HPV oncogenes, E6 and E7.

Materials and Methods: ADRβ expression levels were examined in patient-derived cervical cancer samples. We used an orthotopic model of cervical cancer to investigate the effects of restraint stress on tumor growth and metastasis. We evaluated the in vivo effects of a β-blocker, propranolol, and HPV E6/E7 siRNA. In vitro, ADRβ positive cervical cancer cells were …


Pi3k- And Mtor-Dependent Mechanisms Of Lapatinib Resistance And Resulting Therapeutic Opportunities, Samuel Brady Aug 2014

Pi3k- And Mtor-Dependent Mechanisms Of Lapatinib Resistance And Resulting Therapeutic Opportunities, Samuel Brady

Dissertations & Theses (Open Access)

Breast cancers with HER2 amplification represent 20-25% of breast cancer cases and are frequently responsive to the HER2 kinase inhibitor lapatinib, but generally for only short duration. We aimed to understand how breast cancers with HER2 amplification become resistant to lapatinib, in order to identify potential therapies that can overcome lapatinib resistance. To establish lapatinib resistance models we treated three HER2+ breast cancer cell lines with lapatinib for several months until they became lapatinib-resistant. We then compared lapatinib-sensitive (parental) cells with their lapatinib-resistant (LapR) counterparts to identify changes conferring lapatinib resistance. We found that activation of PI3K, specifically the p110α …


Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti Aug 2014

Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti

Dissertations & Theses (Open Access)

After many years of cancer research, it is well accepted by the scientific community that the future cure for this disease lies in a personalized therapeutic approach. Anticipating therapeutic outcome based on the genetic signature of a tumor has become the new paradigm. The PI3K pathway represents an ideal target for bladder cancer, as many of the key proteins of this pathway are altered or mutated in this particular type of cancer. Several small molecule inhibitors have been developed to target this pathway, but their efficacy has been shown to be heterogeneous among different cell lines and mostly cytostatic but …


Pancreatic Ribonuclease Functions As An Epidermal Growth Factor Receptor Ligand Independently Of Its Enzyme Activity And Contributes To Cetuximab Resistance, Heng-Huan Lee Aug 2014

Pancreatic Ribonuclease Functions As An Epidermal Growth Factor Receptor Ligand Independently Of Its Enzyme Activity And Contributes To Cetuximab Resistance, Heng-Huan Lee

Dissertations & Theses (Open Access)

Ribonuclease (RNase) with its catalytic enzyme activity to degrade RNAs has been shown as a diagnostic serum marker for pancreatic cancer and has also been suspected to have an unidentified cell surface receptor. Epidermal growth factor receptor (EGFR), a well-characterized receptor tyrosine kinase is an effective therapeutic target in multiple cancer types. However, clinical trials targeting EGFR have not demonstrated improved therapeutic efficacy in pancreatic cancer. Here, we show that both bovine pancreatic RNase A (bRNaseA) and human RNase 5 (hRNase5) act as EGFR ligands and directly activate EGFR to promote epithelial-mesenchymal transition. This ligand-like activity is independent of RNases’ …


Targeting The Mdm2-P53 Axis For The Treatment Of Dedifferentiated Liposarcoma, Katelynn Bill Aug 2014

Targeting The Mdm2-P53 Axis For The Treatment Of Dedifferentiated Liposarcoma, Katelynn Bill

Dissertations & Theses (Open Access)

Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy characterized by a high rate of recurrence and dismal patient outcome. Minimal improvement in patient survival has been made in the last several decades, highlighting the crucial need for improved therapeutic strategies. A better understanding of the molecular deregulations underlying DDLPS would facilitate the discovery of improved therapeutic approaches. MDM2 is a well characterized oncoprotein and the most known negative regulator of p53. MDM2 amplification is considered the “hallmark” of DDLPS. Additionally, these tumors are known to harbor wild-type p53. We sought to take advantage of this knowledge and evaluate the role of …