Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Effect Of Strong Electrolyte Containing Gelling Aids On The Sol-Gel Transition Temperature Of Hypromellose 2910, Elnaz Sadeghi Dec 2018

Effect Of Strong Electrolyte Containing Gelling Aids On The Sol-Gel Transition Temperature Of Hypromellose 2910, Elnaz Sadeghi

Biomedical Engineering ETDs

Hypromellose, or hydroxypropyl methylcellulose (HPMC) - has been widely used for biomedical and pharmaceutical applications due to its advantages, including that it is modifiable in terms of viscosity, and it has the ability to form thermally reversible hydrogels. The thermal gelation temperature (TGel) of a given HPMC solution strongly depends on its characteristic grade and the solution concentration. Applying certain additives can modify the TGel even further; depending on their nature and concentration. With the addition of said additives, a lower or higher TGel can be obtained. For example, the addition of sodium chloride (NaCl) reduces …


Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl Nov 2018

Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl

Biomedical Engineering ETDs

This dissertation describes fabrication of devices and other tools for biomedical applications through the integration of acoustofluidic systems with bio separation assays, instrumentation components, and soft materials interfaces. For example, we engineer a new class of transparent acoustic flow chambers ideal for optical interrogation. We demonstrate efficacy of these devices by enhancing the signal for high throughput acoustic flow cytometry, capable of robust particle focusing across multiple parallel flowing streams. We also investigate an automated sampling system to determine the parameters of transient particle stream focusing in between sample boluses and air bubbles to model a high throughput, multi-sampling acoustic …


Improving The Palatability Of Colonoscopy Preparations, Phuong Anh Hoang Nguyen, Darnell Leon Cuylear, Heather Elizabeth Canavan Nov 2018

Improving The Palatability Of Colonoscopy Preparations, Phuong Anh Hoang Nguyen, Darnell Leon Cuylear, Heather Elizabeth Canavan

Shared Knowledge Conference

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. The most reliable screening method of CRC is a colonoscopy which requires a 4-Liter polymer with electrolytes preparation. Two in five patients are non-compliant to their colonoscopy schedules, with many patients who abstain reporting refusal due to significant discomfort associated with this preparation. Furthermore, there are distinct gender differences in the tolerance of colonoscopy preparations in male and female populations. We hypothesize the differences in clinic are a result of toxic effects of the drug associated with poor mixing by individual patients. PEG, the drug, …


An Engineer’S Take On The Bone-Ligament Interface: Utilizing Novel Technology To Improve Clinical Outcomes, Emma Garcia Nov 2018

An Engineer’S Take On The Bone-Ligament Interface: Utilizing Novel Technology To Improve Clinical Outcomes, Emma Garcia

Shared Knowledge Conference

Ligament repair is a common surgical practice with a significant lack of viable replacements. The current gold standard for repair is the use of tendon grafts from cadavers or from another place in the patient’s body; however, these often cause more problems than they solve including immune responses or a lack of mobility in another place in the body. Synthetic replacements are of growing interest, though the ability to mimic the complex structure of the ligament and how it connects to the bone remains an obstacle. Our lab built a 3D bioprinter combined with an electrospinner to address this complicated …


Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin Nov 2018

Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin

Shared Knowledge Conference

Design of small molecules is an ongoing focus for developing agents against pathogenic viruses and bacteria that are threats to worldwide health. Viruses such as Zika feature assemblies of repeat peptide subunits or capsid proteins which are potential targets for antiviral compounds. Other protein assemblies are implicated in pathology of Alzheimer’s Disease (AD) and additional neurodegenerative diseases characterized by large assemblies of misfolded proteins such as amyloid-beta (Aβ) and tau. Recent studies on a class of conjugated polyelectrolytes (CPEs) with phenylene ethynylene moieties and charged functional groups have shown potential both as bioactive antimicrobials and theragnostic sensing agents for tracking …


Improving The Palatability Of Colonoscopy Preparations, Phuong Anh Hoang Nguyen, Sarah Mounho, Darnell Cuylear, Heather Canavan Nov 2018

Improving The Palatability Of Colonoscopy Preparations, Phuong Anh Hoang Nguyen, Sarah Mounho, Darnell Cuylear, Heather Canavan

Shared Knowledge Conference

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. The most reliable screening method of CRC is a colonoscopy which requires a 4-Liter polymer with electrolytes preparation. Two in five patients are non-compliant to their colonoscopy schedules, with many patients who abstain reporting refusal due to significant discomfort associated with this preparation. Furthermore, there are distinct gender differences in the tolerance of colonoscopy preparations in male and female populations. We hypothesize the differences in clinic are a result of toxic effects of the drug associated with poor mixing by individual patients. PEG, the drug, …


3d Bioprinting And Near-Field Electrospinning Composite Scaffolds For The Bone-Ligament Interface, Emma Garcia, Christina Salas, Matthew N. Rush, Christopher Buksa, Marissa Perez, Ava Mauser, Steven Nery, Fermin Prieto, Darielys Morales Nov 2018

3d Bioprinting And Near-Field Electrospinning Composite Scaffolds For The Bone-Ligament Interface, Emma Garcia, Christina Salas, Matthew N. Rush, Christopher Buksa, Marissa Perez, Ava Mauser, Steven Nery, Fermin Prieto, Darielys Morales

Shared Knowledge Conference

3D bioprinting is an additive manufacturing technique that can utilize a range of bioactive materials to construct specific architectures that mimic native tissue. Near-field electrospinning (NFE) offers precise alignment control to create non-woven mats with high tensile strengths. We built a custom E-spin printer that enables layer-by-layer alternating deposition between 3D bioprinting and NFE to create composite scaffolds for the bone-ligament interface. This complex region is difficult to simulate due to its functionally graded mechanical and biochemical properties. We created NFE poly(caprolactone) highly aligned micro-fibers which formed collagen fibril-like bundles. Poly(ethylene glycol) diacrylate with decellularized bone was encased in the …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


Compartmentalization Of Dna-Based Molecular Computing Elements Using Lipid Bilayers, Aurora Fabry-Wood Jul 2018

Compartmentalization Of Dna-Based Molecular Computing Elements Using Lipid Bilayers, Aurora Fabry-Wood

Biomedical Engineering ETDs

This dissertation will present a progression from the detection of double-stranded DNA using a combination of toehold-mediated strand displacement and DNAzyme reactions in dilute saline solutions, to the generation of separate compartments to allow standardization of DNA computing elements, by protecting from complementary strands. In well-mixed solutions complementary regions cause spurious interactions. Importantly, these compartments also provide protection from nucleases. Along the way we will also explore the use of silica microsphere supported lipid bilayers to run compartmentalized DNA reactions on a fluid surface and the design of a molecule capable of DNA-based transmembrane signal transduction.


Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs May 2018

Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs

Biomedical Sciences ETDs

Aortic valve disease (AVD) is a large contributor to health costs in the United States affecting 2.8% of the population greater than 75 years old. With a growing elderly population due to medical advances, AVD will continue to rise in prevalence over time. Current treatments for AVD are insufficient due to a lack of preventative therapies and the bioprosthetic valves used for surgical replacement have major limitations. Tissue engineered heart valves (TEHVs) present an ideal solution to current AVD needs because of their biocompatibility, capability to integrate with the host’s tissue, and ability to utilize the natural repair mechanisms of …


Neutrosophic Computing And Machine Learning, Vol. 1, Florentin Smarandache, Maikel Leyva-Vázquez Jan 2018

Neutrosophic Computing And Machine Learning, Vol. 1, Florentin Smarandache, Maikel Leyva-Vázquez

Branch Mathematics and Statistics Faculty and Staff Publications

La neutrosofía es una nueva rama de la filosofía la cual estudia el origen, naturaleza y alcance de las neutralidades, así como sus interacciones con diferentes espectros ideacionales: (A) es una idea, proposición, teoría, evento, concepto o entidad; anti (A) es el opuesto de (A); y (neut-A) significa ni (A) ni anti (A), es decir, la neutralidad entre los dos extremos. Etimológicamente neutron-sofía [Frances neutre < Latin neuter, neutral, y griego sophia, conocimiento] significa conocimiento de los pensamiento neutrales y comenzó en 1995. Su teoría fundamental afirma que toda idea < A > tiende a ser neutralizada, disminuida, balaceada por las ideas (no solo como Hegel planteó)- como un estado de equilibrio.