Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2013

Reproducibility of results

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Impact Of Treatment Response Metrics On Photodynamic Therapy Planning And Outcomes In A Three-Dimensional Model Of Ovarian Cancer, Sriram Anbil, Imran Rizvi, Jonathan P. Celli, Nermina Alagic, Brian W. Pogue, Tayyaba Hasan Sep 2013

Impact Of Treatment Response Metrics On Photodynamic Therapy Planning And Outcomes In A Three-Dimensional Model Of Ovarian Cancer, Sriram Anbil, Imran Rizvi, Jonathan P. Celli, Nermina Alagic, Brian W. Pogue, Tayyaba Hasan

Dartmouth Scholarship

Common methods to characterize treatment efficacy based on morphological imaging may misrepresent outcomes and exclude effective therapies. Using a three-dimensional model of ovarian cancer, two functional treatment response metrics are used to evaluate photodynamic therapy (PDT) efficacy: total volume, calculated from viable and nonviable cells, and live volume, calculated from viable cells. The utility of these volume-based metrics is corroborated using independent reporters of photodynamic activity: viability, a common fluorescence-based ratiometric analysis, and photosensitizer photobleaching, which is characterized by a loss of fluorescence due in part to the production of reactive species during PDT. Live volume correlated with both photobleaching …


Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen Jul 2013

Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen

Dartmouth Scholarship

The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant …


Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Jan 2013

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the …


Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue Jan 2013

Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue

Dartmouth Scholarship

Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction …