Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Series

2013

Computer-assisted

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Continuous Correction Of Differential Path Length Factor In Near-Infrared Spectroscopy, Tanveer Talukdar, Jason H. Moore, Solomon G. Diamond May 2013

Continuous Correction Of Differential Path Length Factor In Near-Infrared Spectroscopy, Tanveer Talukdar, Jason H. Moore, Solomon G. Diamond

Dartmouth Scholarship

In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively …


Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue Jan 2013

Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue

Dartmouth Scholarship

Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction …