Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Doctoral Dissertations

Paclitaxel

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang Jan 2013

Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang

Doctoral Dissertations

In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs.

In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for …


Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng Apr 2011

Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng

Doctoral Dissertations

Researchers have been trying to fight cancer with synthesis of new bioactive compounds but many of these novel drugs have low solubility in water and it is difficult to deliver them into a patient's body. One way of solving this particular problem is to use nanoscale drug delivery systems. In this dissertation, we describe using an ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs with 50∼200 nm particle size with designed coating to achieve sustained release and target delivery.

Two methods for systematic manufacture of low solubility anti-cancer drug nanoparticles were proposed: I) Top-down approach to breakdown larger drug …