Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Diseases

University of Kentucky

Series

2016

Rats, Sprague-Dawley

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer Feb 2016

AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer

Sanders-Brown Center on Aging Faculty Publications

Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood–brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood–brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We …


Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris Feb 2016

Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate …