Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Diseases

University of Kentucky

Sanders-Brown Center on Aging Faculty Publications

Series

Dementia

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris Jul 2018

Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and …


Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris Jun 2017

Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with …


Neurovascular Astrocyte Degeneration In The Hyperhomocysteinemia Model Of Vascular Cognitive Impairment And Dementia (Vcid), Tiffany L. Sudduth, Erica M. Weekman, Brittani Rae Price, Jennifer L. Gooch, Abigail E. Woolums, Christopher M. Norris, Donna M. Wilcock Jan 2017

Neurovascular Astrocyte Degeneration In The Hyperhomocysteinemia Model Of Vascular Cognitive Impairment And Dementia (Vcid), Tiffany L. Sudduth, Erica M. Weekman, Brittani Rae Price, Jennifer L. Gooch, Abigail E. Woolums, Christopher M. Norris, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

Vascular cognitive impairment and dementia (VCID) is the second leading cause of dementia behind Alzheimer’s disease (AD) and is a frequent co-morbidity with AD. Despite its prevalence, little is known about the molecular mechanisms underlying the cognitive dysfunction resulting from cerebrovascular disease. Astrocytic end-feet almost completely surround intraparenchymal blood vessels in the brain and express a variety of channels and markers indicative of their specialized functions in the maintenance of ionic and osmotic homeostasis and gliovascular signaling. These functions are mediated by end-foot enrichment of the aquaporin 4 water channel (AQP4), the inward rectifying potassium channel Kir4.1 and the calcium-dependent …


Neuropathological And Genetic Correlates Of Survival And Dementia Onset In Synucleinopathies: A Retrospective Analysis, David J. Irwin, Murray Grossman, Daniel Weintraub, Howard I. Hurtig, John E. Duda, Sharon X. Xie, Edward B. Lee, Vivianna M. Van Deerlin, Oscar L. Lopez, Julia K. Kofler, Peter T. Nelson, Gregory A. Jicha, Randy Woltjer, Joseph F. Quinn, Jeffery Kaye, James B. Leverenz, Debby Tsuang, Katelan Longfellow, Dora Yearout, Walter Kukull, C. Dirk Keene, Thomas J. Montine, Cyrus P. Zabetian, John Q. Trojanowski Jan 2017

Neuropathological And Genetic Correlates Of Survival And Dementia Onset In Synucleinopathies: A Retrospective Analysis, David J. Irwin, Murray Grossman, Daniel Weintraub, Howard I. Hurtig, John E. Duda, Sharon X. Xie, Edward B. Lee, Vivianna M. Van Deerlin, Oscar L. Lopez, Julia K. Kofler, Peter T. Nelson, Gregory A. Jicha, Randy Woltjer, Joseph F. Quinn, Jeffery Kaye, James B. Leverenz, Debby Tsuang, Katelan Longfellow, Dora Yearout, Walter Kukull, C. Dirk Keene, Thomas J. Montine, Cyrus P. Zabetian, John Q. Trojanowski

Sanders-Brown Center on Aging Faculty Publications

Background

Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies.

Methods

In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of …