Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Decorin Suppresses Tumor Lymphangiogenesis: A Mechanism To Curtail Cancer Progression, Dipon K. Mondal, Christopher Xie, Gabriel J. Pascal, Simone Buraschi, Renato V. Iozzo Apr 2024

Decorin Suppresses Tumor Lymphangiogenesis: A Mechanism To Curtail Cancer Progression, Dipon K. Mondal, Christopher Xie, Gabriel J. Pascal, Simone Buraschi, Renato V. Iozzo

Kimmel Cancer Center Faculty Papers

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, …


Stat5 Induces Androgen Receptor (Ar) Gene Transcription In Prostate Cancer And Offers A Druggable Pathway To Target Ar Signaling, Cristina Maranto, Lavannya Sabharwal, Vindhya Udhane, Samuel P. Pitzen, Braedan Mccluskey, Songyan Qi, Christine O'Connor, Savita Devi, Scott Johnson, Kenneth Jacobsohn, Anjishnu Banerjee, Kenneth A. Iczkowski, Liang Wang, Scott M. Dehm, Marja T. Nevalainen Feb 2024

Stat5 Induces Androgen Receptor (Ar) Gene Transcription In Prostate Cancer And Offers A Druggable Pathway To Target Ar Signaling, Cristina Maranto, Lavannya Sabharwal, Vindhya Udhane, Samuel P. Pitzen, Braedan Mccluskey, Songyan Qi, Christine O'Connor, Savita Devi, Scott Johnson, Kenneth Jacobsohn, Anjishnu Banerjee, Kenneth A. Iczkowski, Liang Wang, Scott M. Dehm, Marja T. Nevalainen

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, …


Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce May 2023

Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% …


Repression Of Esophageal Neoplasia And Inflammatory Signaling By Anti-Mir-31 Delivery In Vivo., Cristian Taccioli, Michela Garofalo, Hongping Chen, Yubao Jiang, Guidantonio Malagoli Tagliazucchi, Gianpiero Di Leva, Hansjuerg Alder, Paolo Fadda, Justin Middleton, Karl J. Smalley, Tommaso Selmi, Srivatsava Naidu, John L. Farber, Carlo M. Croce, Louise Fong Nov 2015

Repression Of Esophageal Neoplasia And Inflammatory Signaling By Anti-Mir-31 Delivery In Vivo., Cristian Taccioli, Michela Garofalo, Hongping Chen, Yubao Jiang, Guidantonio Malagoli Tagliazucchi, Gianpiero Di Leva, Hansjuerg Alder, Paolo Fadda, Justin Middleton, Karl J. Smalley, Tommaso Selmi, Srivatsava Naidu, John L. Farber, Carlo M. Croce, Louise Fong

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Overexpression of microRNA-31 (miR-31) is implicated in the pathogenesis of esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary zinc deficiency. Using a rat model that recapitulates features of human ESCC, the mechanism whereby Zn regulates miR-31 expression to promote ESCC is examined.

METHODS: To inhibit in vivo esophageal miR-31 overexpression in Zn-deficient rats (n = 12-20 per group), locked nucleic acid-modified anti-miR-31 oligonucleotides were administered over five weeks. miR-31 expression was determined by northern blotting, quantitative polymerase chain reaction, and in situ hybridization. Physiological miR-31 targets were identified by microarray analysis and verified by luciferase reporter …