Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Diseases

PDF

Dartmouth College

2014

Neoplasms

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Inpp4b Suppresses Prostate Cancer Cell Invasion, Myles C. Hodgson, Elena I. Deryugina, Egla Suarez, Sandra M. Lopez, Dong Lin, Hui Xue, Ivan P. Gorlov Sep 2014

Inpp4b Suppresses Prostate Cancer Cell Invasion, Myles C. Hodgson, Elena I. Deryugina, Egla Suarez, Sandra M. Lopez, Dong Lin, Hui Xue, Ivan P. Gorlov

Dartmouth Scholarship

INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer.

We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine …


Predicting Targeted Drug Combinations Based On Pareto Optimal Patterns Of Coexpression Network Connectivity, Nadia M. Penrod, Casey S. Greene, Jason H. Moore Apr 2014

Predicting Targeted Drug Combinations Based On Pareto Optimal Patterns Of Coexpression Network Connectivity, Nadia M. Penrod, Casey S. Greene, Jason H. Moore

Dartmouth Scholarship

Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced …


Methylation Of Leukocyte Dna And Ovarian Cancer: Relationships With Disease Status And Outcome, Brooke L. Fridley, Sebastian M. Armasu, Mine S. Cicek, Melissa C. Larson, Chen Wang, Stacey J. Winham, Kimberly R. Kalli, Devin C. Koestler Apr 2014

Methylation Of Leukocyte Dna And Ovarian Cancer: Relationships With Disease Status And Outcome, Brooke L. Fridley, Sebastian M. Armasu, Mine S. Cicek, Melissa C. Larson, Chen Wang, Stacey J. Winham, Kimberly R. Kalli, Devin C. Koestler

Dartmouth Scholarship

Genome-wide interrogation of DNA methylation (DNAm) in blood-derived leukocytes has become feasible with the advent of CpG genotyping arrays. In epithelial ovarian cancer (EOC), one report found substantial DNAm differences between cases and controls; however, many of these disease-associated CpGs were attributed to differences in white blood cell type distributions. We examined blood-based DNAm in 336 EOC cases and 398 controls; we included only high-quality CpG loci that did not show evidence of association with white blood cell type distributions to evaluate association with case status and overall survival.


How To Get The Most From Microarray Data: Advice From Reverse Genomics, Ivan P. Gorlov, Ji-Yeon Yang, Jinyoung Byun, Christopher Logothetis, Olga Y. Gorlova, Kim-Anh Do, Christopher Amos Mar 2014

How To Get The Most From Microarray Data: Advice From Reverse Genomics, Ivan P. Gorlov, Ji-Yeon Yang, Jinyoung Byun, Christopher Logothetis, Olga Y. Gorlova, Kim-Anh Do, Christopher Amos

Dartmouth Scholarship

Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful for identifying cancer associated genes. The goal of this study was to identify the best microarray data–derived predictor of known cancer associated genes. We found that the traditional approach of identifying cancer genes—identifying differentially expressed genes—is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies cancer-associated genes more effectively. The results …