Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs

PDF

Pharmacy Faculty Articles and Research

Peptides

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Amphiphilic Peptides For Efficient Sirna Delivery, Saghar Mozaffari, Emira Bousoik, Farideh Amirrad, Robert Lamboy, Melissa Coyle, Ryley Hall, Abdulaziz Alasmari, Parvin Mahdipoor, Keykavous Parang, Hamidreza Montazeri Aliabadi Apr 2019

Amphiphilic Peptides For Efficient Sirna Delivery, Saghar Mozaffari, Emira Bousoik, Farideh Amirrad, Robert Lamboy, Melissa Coyle, Ryley Hall, Abdulaziz Alasmari, Parvin Mahdipoor, Keykavous Parang, Hamidreza Montazeri Aliabadi

Pharmacy Faculty Articles and Research

A number of amphiphilic cyclic peptides—[FR]4, [WR]5, and [WK]5—containing hydrophobic and positively-charged amino acids were synthesized by Fmoc/tBu solid-phase peptide methods and evaluated for their efficiency in intracellular delivery of siRNA to triple-negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, in the presence and absence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Among the peptides, [WR]5, which contains alternate tryptophan (W) and arginine (R) residues, was found to be the most efficient in the delivery of siRNA by improving the delivery by more than 3-fold when compared to other synthesized cyclic peptides that were not efficient. The data also showed that co-formulation of [WR]5 …


Electrochemical Characterization Of Protein Adsorption Onto Yngrt-Au And Vlgxe-Au Surfaces, Hanna Trzeciakiewicz, Jose Esteves-Villanueva, Rania Soudy, Kamaljit Kaur, Sanela Martic-Milne Aug 2015

Electrochemical Characterization Of Protein Adsorption Onto Yngrt-Au And Vlgxe-Au Surfaces, Hanna Trzeciakiewicz, Jose Esteves-Villanueva, Rania Soudy, Kamaljit Kaur, Sanela Martic-Milne

Pharmacy Faculty Articles and Research

The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in …


Amphiphilic Triazolyl Peptides: Synthesis And Evaluation As Nanostructures, Naser Sayeh, Amir Nasrolahi Shirazi, Donghoon Oh, Jiadong Sun, David Rowley, Antara Banerjee, Arpita Yadav, Rakesh Tiwari, Keykavous Parang Jan 2014

Amphiphilic Triazolyl Peptides: Synthesis And Evaluation As Nanostructures, Naser Sayeh, Amir Nasrolahi Shirazi, Donghoon Oh, Jiadong Sun, David Rowley, Antara Banerjee, Arpita Yadav, Rakesh Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

A new class of amphiphilic triazolyl peptides was designed and synthesized from peptide-based building blocks containing alkyne and azide functional groups namely linear (W(pG))3, cyclic[W(pG)]3, and Ac-K(N3)R-NH2,where W, R, K, and pG represent tryptophan, arginine, lysine, and propargylglycine residues, respectively. The linear (W(pG))3 and cyclic [W(pG)]3 peptides containing alkyne residues were conjugated with Ac-K(N3)R-NH2 functionalized with azide group through click chemistry in the presence of CuSO4.5H2O, Cu (powder), sodium ascorbate, and N,N-disopropylethylamine in methanol:water to afford amphiphilic triazolyl linear-linear (WG(triazole-KR-NH2))3 and cyclic-linear [WG(triazole-KR-NH2)]3 peptides, respectively. The secondary structures of both peptides were similar to a distorted α-helix as shown by …


Self-Assembly Of Peptides To Nanostructures, Dindyal Mandal, Amir Nasrolahi Shirazi, Keykavous Parang Jan 2014

Self-Assembly Of Peptides To Nanostructures, Dindyal Mandal, Amir Nasrolahi Shirazi, Keykavous Parang

Pharmacy Faculty Articles and Research

The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While …