Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs

PDF

Mathematics, Physics, and Computer Science Faculty Articles and Research

Protein structure

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …


Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Nov 2015

Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that …


Structure-Functional Prediction And Analysis Of Cancer Mutation Effects In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker Jan 2014

Structure-Functional Prediction And Analysis Of Cancer Mutation Effects In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational …