Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Microenvironment-Induced Pten Loss By Exosomal Microrna Primes Brain Metastasis Outgrowth, Lin Zhang Dec 2016

Microenvironment-Induced Pten Loss By Exosomal Microrna Primes Brain Metastasis Outgrowth, Lin Zhang

Dissertations & Theses (Open Access)

Development of life-threatening cancer metastases at distant organs requires disseminated tumor cells’ adaptation to and co-evolution with the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interplay between metastatic tumor cells and extrinsic signals at individual metastatic organ sites critically impacts the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumor cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that primary tumor cells with normal expression of PTEN, an important …


Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao Jan 2016

Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Intercellular genetic communication is an essential requirement for coordination of cell proliferation and differentiation and has an important role in many cellular processes. Gap junction channels possess large pore allowing passage of ions and small molecules between cells. MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression broadly. Here, we report that miRNAs can pass through gap junction channels in a connexin-dependent manner. Connexin43 (Cx43) had higher permeability, whereas Cx30 showed little permeability to miRNAs. In the tested connexin cell lines, the permeability to miRNAs demonstrated: Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null. However, consistent with a uniform …