Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

The Role Of E2f1 In The Response To Dna Double Strand Breaks, Jie Chen Dec 2011

The Role Of E2f1 In The Response To Dna Double Strand Breaks, Jie Chen

Dissertations & Theses (Open Access)

The importance of E2F transcription factors in the processes of proliferation and apoptosis are well established. E2F1, but not other E2F family members, is also phosphorylated and stabilized in response to various forms of DNA damage to regulate the expression of cell cycle and pro-apoptotic genes. E2F1 also relocalizes and forms foci at sites of DNA double-strand breaks but the function of E2F1 at sites of damage is still unknown. Here I reveal that E2F1 deficiency leads to increased spontaneous DNA break and impaired recovery following exposure to ionizing radiation. In response to DNA double-strand breaks, NBS1 phosphorylation and foci …


The Role Of Receptor Tyrosine Kinase Axl In Pancreatic Ductal Adenocarcinoma And Its Regulation By Hematopoietic Progenitor Kinase 1, Xianzhou Song Dec 2011

The Role Of Receptor Tyrosine Kinase Axl In Pancreatic Ductal Adenocarcinoma And Its Regulation By Hematopoietic Progenitor Kinase 1, Xianzhou Song

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples …


Enforced Expression Of Tbx1 In Fetal Thymic Epithelial Cells Antagonizes Thymus Organogenesis, Kim T. Cardenas Aug 2011

Enforced Expression Of Tbx1 In Fetal Thymic Epithelial Cells Antagonizes Thymus Organogenesis, Kim T. Cardenas

Dissertations & Theses (Open Access)

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes

thymus organogenesis

Kim T. Cardenas

The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, …


Role Of Prostaglandin E2 In The Regulation Of Pancreatic Stellate Cells Hyper Activity Associated With Pancreatic Cancer, Chantale Charo Aug 2011

Role Of Prostaglandin E2 In The Regulation Of Pancreatic Stellate Cells Hyper Activity Associated With Pancreatic Cancer, Chantale Charo

Dissertations & Theses (Open Access)

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated …


Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander May 2011

Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander

Dissertations & Theses (Open Access)

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs …