Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

2017

Oxidants

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Endonucleolytic Cleavage In The Expansion Segment 7 Of 25s Rrna Is An Early Marker Of Low-Level Oxidative Stress In Yeast, Daniel Shedlovskiy, Jessica A Zinskie, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik Nov 2017

Endonucleolytic Cleavage In The Expansion Segment 7 Of 25s Rrna Is An Early Marker Of Low-Level Oxidative Stress In Yeast, Daniel Shedlovskiy, Jessica A Zinskie, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The ability to detect and respond to oxidative stress is crucial to the survival of living organisms. In cells, sensing of increased levels of reactive oxygen species (ROS) activates many defensive mechanisms that limit or repair damage to cell components. The ROS-signaling responses necessary for cell survival under oxidative stress conditions remain incompletely understood, especially for the translational machinery. Here, we found that drug treatments or a genetic deficiency in the thioredoxin system that increase levels of endogenous hydrogen peroxide in the yeast Saccharomyces cerevisiae promote site-specific endonucleolytic cleavage in 25S ribosomal RNA (rRNA) adjacent to the c loop of …


Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro Jun 2017

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro

Nader G. Abraham

We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic …


Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro Jun 2017

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro

Jiang Liu

We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic …