Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Effect Of Extracellular Survivin And Lymphoma Exosomes On Natural Killer Cells, Heather R. Ferguson Bennit Sep 2017

Effect Of Extracellular Survivin And Lymphoma Exosomes On Natural Killer Cells, Heather R. Ferguson Bennit

Loma Linda University Electronic Theses, Dissertations & Projects

Tumors alter their microenvironment to promote survival using methods such as angiogenesis promotion, growth signals, and immune suppression. The immune system becomes unresponsive to transformed neoplastic cells through a variety of methods including T cell suppression, increased myeloid-derived suppressor cells (MDSCs), and reduced natural killer (NK) cell activity. NK cells have inherent killing capabilities and thus are among the first responders in recognizing and destroying abnormal cells. However, many types of cancers inhibit the surveillance and cytotoxic abilities of NK cells by releasing exosomes, vesicles that can modulate the tumor microenvironment (TME) and intercellular communication for the purpose of enhancing …


A Novel Population Of Cardiovascular Progenitors Persist In Neonates As Mesendodermal Cells, Julia Kim Jun 2017

A Novel Population Of Cardiovascular Progenitors Persist In Neonates As Mesendodermal Cells, Julia Kim

Loma Linda University Electronic Theses, Dissertations & Projects

The rise in mortality due to cardiovascular disease has increased the need to develop an efficient regenerative therapeutic for heart failure. Numerous cell-based therapies have been investigated for myocardial regeneration; however, an optimal progenitor has yet to be discovered. Identifying a resident cell population with enhanced ability to differentiate into multiple lineages would greatly contribute to the field of stem cell-based regenerative therapy. Evidence suggests that endogenous cardiovascular progenitor cells (CPCs) that have been isolated from the heart itself express ISL1, KDR, and MESP1, and are capable of differentiating into all major cardiac lineages. The earlier developmental stage at which …