Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

A Comparative Analysis Of Translesion Dna Synthesis Catalyzed By A High-Fidelity Dna Polymerase, Anvesh Dasari, Tejal Deodhar, Anthony J. Berdis Jul 2017

A Comparative Analysis Of Translesion Dna Synthesis Catalyzed By A High-Fidelity Dna Polymerase, Anvesh Dasari, Tejal Deodhar, Anthony J. Berdis

Chemistry Faculty Publications

Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the …


Myeloperoxidase-Mediated Protein Lysine Oxidation Generates 2- Aminoadipic Acid And Lysine Nitrile In Vivo, Hongqiao Lin, Bruce S. Levison, Jennifer A. Buffa, Ying Huang, Xiaoming Fu, Zeneng Wang, Valentin Gogonea, Joseph A. Didonato, Stanley L. Hazen Jan 2017

Myeloperoxidase-Mediated Protein Lysine Oxidation Generates 2- Aminoadipic Acid And Lysine Nitrile In Vivo, Hongqiao Lin, Bruce S. Levison, Jennifer A. Buffa, Ying Huang, Xiaoming Fu, Zeneng Wang, Valentin Gogonea, Joseph A. Didonato, Stanley L. Hazen

Chemistry Faculty Publications

Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2- AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or basecatalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate …