Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Medicine and Health Sciences

Nicotinamide Riboside And Beta-Hydroxybutyrate Activate Parallel Pathways For C. Elegans Lifespan Extension, Mckenzie Peters May 2023

Nicotinamide Riboside And Beta-Hydroxybutyrate Activate Parallel Pathways For C. Elegans Lifespan Extension, Mckenzie Peters

Undergraduate Honors Theses

Supplementation with nicotinamide riboside (NR), a form of vitamin B3 and a precursor of nicotinamide adenine dinucleotide (NAD+) extends lifespan in the nematode C. elegans and delays aging-related pathologies in mammals. During aging, levels of NAD+ decline causing metabolic dysfunction and oxidative damage. Studies in C. elegans found that when NR was administered during larval development it induced the mitochondrial unfolded protein response (UPRmt), which is frequently associated with lifespan extension. Both calorie restriction (CR) and ketogenic diets (KD) have been shown to extend lifespan, in part through increasing NAD+ and through increasing levels …


Characterization Of Biomarkers For Alzheimer’S Disease And Hiv-1 Associated Neurocognitive Disorders, Armando Garces Iii Dec 2021

Characterization Of Biomarkers For Alzheimer’S Disease And Hiv-1 Associated Neurocognitive Disorders, Armando Garces Iii

Theses and Dissertations

Alzheimer’s disease is a neurodegenerative disorder that is characterized by progressive cognitive decline and the accumulation of amyloid beta and neurofibrillary tangles in regions of the brain. These protein deposits are known to generate multiple effects on the brain that lead to neurodegeneration. It has been established that (Human Immunodeficiency Virus) HIV-1 accelerates the aging process of people living with HIV-1. Moreover, there is significant clinical evidence indicating a potential link between the neurodegeneration developed by those with an HIV-1 infection and AD. HIV-1 viral infection causes cognitive impairment known as …


Progressive Age-Dependence And Frequency Difference In The Effect Of Gap Junctions On Active Cochlear Amplification And Hearing, Liang Zong, Jin Chen, Yan Zhu, Hong-Bo Zhao Jul 2017

Progressive Age-Dependence And Frequency Difference In The Effect Of Gap Junctions On Active Cochlear Amplification And Hearing, Liang Zong, Jin Chen, Yan Zhu, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low …


Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers Mar 2017

Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers

USF Tampa Graduate Theses and Dissertations

The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a …


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


Investigating The Role Of Dna Polymerase Beta In The Aging Phenotype Of Down Syndrome, Aqila Ahmed Ahmed Jan 2016

Investigating The Role Of Dna Polymerase Beta In The Aging Phenotype Of Down Syndrome, Aqila Ahmed Ahmed

Wayne State University Dissertations

Down syndrome (DS) is a chromosomal condition characterized by accelerated aging that has yet to be directly linked to a DNA repair defect. Reduced PolB and unrepaired damage from oxidative stress observed in DS, point toward defective base excision repair (BER). In this study, we report that low PolB transcript correlates with increased markers of senescence. The gene dosage effect of Trisomy 21 is likely the source for PolB downregulation. We show that the HSA21-localized miR-155 overexpression correlates with a decrease in Creb1 and PolB, thus establishing a putative regulatory pathway. Data from the DS mouse model, Ts65Dn, reveal low …


Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds May 2015

Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds

Dissertations, Masters Theses, Capstones, and Culminating Projects

Degeneration of the rod and cone photoreceptors in the human retina is among the most common causes of blindness. Replacing these damaged photoreceptors may help to restore vision. Repairing the damaged retina relies on the insertion of new, healthy cells. Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are two possible sources of photoreceptors to restore vision. Previous data shows that human ES cells and iPS cells can be differentiated into photoreceptors and transplanted into the eye to restore some vision. However, this process is inefficient, and costly. Here, we show a new method for inducing photoreceptor production …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …