Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

The Role Of Protein Kinase C Epsilon In Hydrogen Peroxide And Nitric Oxide Release During Oxidative Stress Caused By Extracorporeal Shockwave Lithotripsy, Edward S. Iames Jun 2011

The Role Of Protein Kinase C Epsilon In Hydrogen Peroxide And Nitric Oxide Release During Oxidative Stress Caused By Extracorporeal Shockwave Lithotripsy, Edward S. Iames

PCOM Biomedical Studies Student Scholarship

Clinical extracorporeal shock wave lithotripsy (ESWL) treatment to ablate kidney stones can cause acute damage to the renal microvasculature. Accumulation of continued treatment with shockwave therapy can lead to chronic damage to the kidney, and lead to clinical hypertension. Shockwaves have been shown to stimulate endothelial cells to release superoxide (SO), which is converted to hydrogen peroxide (H2O2), and reacts with nitric oxide (NO) to produce peroxynitrite anion (OONO-), creating a powerful oxidant that increases oxidative stress while simultaneously reducing NO bioavailability. Increased oxidative stress during events such as ESWL, also uncouples NO production …


The Role Of Endothelial Nitric Oxide Synthase (Enos) Uncoupling On Leukocyte-Endothelial Interactions In Rat Mesenteric Postcapillary Venules, Maria Kern Jan 2011

The Role Of Endothelial Nitric Oxide Synthase (Enos) Uncoupling On Leukocyte-Endothelial Interactions In Rat Mesenteric Postcapillary Venules, Maria Kern

PCOM Biomedical Studies Student Scholarship

Endothelial derived nitric oxide (NO) is essential in the regulation of blood pressure and attenuates leukocyte-endothelial interactions associated with vascular injury. However, when endothelial-derived NO is decreased, endothelial dysfunction results and promotes inflammation characterized by increased leukocyte-endothelial interactions. Under normal conditions, eNOS produces NO in the presence of an essential cofactor, tetrahydrobiopetrin (BH4) by facilitating the reduction of molecular oxygen to L-arginine oxidation and generation of L-citrulline. Whereas uncoupled eNOS refers to the electron transfer that becomes uncoupled to L-arginine oxidation and therefore superoxide (SO) is generated when the dihydrobiopetrin (BH2) to BH4 ratio is increased. SO is subsequently converted …


The Effects Of Protein Kinase C Inhibitors On Blood Nitric Oxide And Hydrogen Peroxide Release In Ischemia And Reperfusion Injury, Kyle D. Bartol Jan 2011

The Effects Of Protein Kinase C Inhibitors On Blood Nitric Oxide And Hydrogen Peroxide Release In Ischemia And Reperfusion Injury, Kyle D. Bartol

PCOM Biomedical Studies Student Scholarship

Vascular endothelial dysfunction is a key component initiating oxidative stress in ischemia/reperfusion (I/R). Endothelial dysfunction is characterized by an increase in hydrogen peroxide (H2O2) and a decrease in the bioavailability of nitric oxide (NO). Previous studies using protein kinase C (PKC) inhibitor Gö 6983 or PKC Beta (β) II inhibitor improved cardiac function in myocardial I/R, decreased leukocyte-endothelial interactions and leukocyte superoxide (SO) release and increased endothelial-derived NO release in vitro. This study examined the effects of Gö 6983 or PKC β II inhibitor on realtime H2O2 and NO release in femoral vein I/R in vivo. NO or H2O2 microsensors …