Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Anatomy

Manuscripts, Articles, Book Chapters and Other Papers

2017

Animals

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Hyperfiltration-Associated Biomechanical Forces In Glomerular Injury And Response: Potential Role For Eicosanoids., Mukut Sharma, Ram Sharma, Ellen T. Mccarthy, Virginia J. Savin, Tarak Srivastava Sep 2017

Hyperfiltration-Associated Biomechanical Forces In Glomerular Injury And Response: Potential Role For Eicosanoids., Mukut Sharma, Ram Sharma, Ellen T. Mccarthy, Virginia J. Savin, Tarak Srivastava

Manuscripts, Articles, Book Chapters and Other Papers

Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a …


Role Of Biomechanical Forces In Hyperfiltration-Mediated Glomerular Injury In Congenital Anomalies Of The Kidney And Urinary Tract., Tarak Srivastava, Ganesh Thiagarajan, Uri S. Alon, Ram Sharma, Ashraf El-Meanawy, Ellen T. Mccarthy, Virginia J. Savin, Mukut Sharma May 2017

Role Of Biomechanical Forces In Hyperfiltration-Mediated Glomerular Injury In Congenital Anomalies Of The Kidney And Urinary Tract., Tarak Srivastava, Ganesh Thiagarajan, Uri S. Alon, Ram Sharma, Ashraf El-Meanawy, Ellen T. Mccarthy, Virginia J. Savin, Mukut Sharma

Manuscripts, Articles, Book Chapters and Other Papers

Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile …


Multiple Targets For Novel Therapy Of Fsgs Associated With Circulating Permeability Factor., Virginia J. Savin, Mukut Sharma, Jianping Zhou, David Genochi, Ram Sharma, Tarak Srivastava, Amna Ilahe, Pooja Budhiraja, Aditi Gupta, Ellen T. Mccarthy Jan 2017

Multiple Targets For Novel Therapy Of Fsgs Associated With Circulating Permeability Factor., Virginia J. Savin, Mukut Sharma, Jianping Zhou, David Genochi, Ram Sharma, Tarak Srivastava, Amna Ilahe, Pooja Budhiraja, Aditi Gupta, Ellen T. Mccarthy

Manuscripts, Articles, Book Chapters and Other Papers

A plasma component is responsible for altered glomerular permeability in patients with focal segmental glomerulosclerosis. Evidence includes recurrence after renal transplantation, remission after plasmapheresis, proteinuria in infants of affected mothers, transfer of proteinuria to experimental animals, and impaired glomerular permeability after exposure to patient plasma. Therapy may include decreasing synthesis of the injurious agent, removing or blocking its interaction with cells, or blocking signaling or enhancing cell defenses to restore the permeability barrier and prevent progression. Agents that may prevent the synthesis of the permeability factor include cytotoxic agents or aggressive chemotherapy. Extracorporeal therapies include plasmapheresis, immunoadsorption with protein A …