Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Activation Of C-Met And Upregulation Of Cd44 Expression Are Associated With The Metastatic Phenotype In The Colorectal Cancer Liver Metastasis Model, Victoria Allison Elliott, Piotr G. Rychahou, Yekaterina Y. Zaytseva, B. Mark Evers May 2014

Activation Of C-Met And Upregulation Of Cd44 Expression Are Associated With The Metastatic Phenotype In The Colorectal Cancer Liver Metastasis Model, Victoria Allison Elliott, Piotr G. Rychahou, Yekaterina Y. Zaytseva, B. Mark Evers

Markey Cancer Center Faculty Publications

Background

Liver metastasis is the most common cause of death in patients with colorectal cancer. Despite extensive research into the biology of cancer progression, the molecular mechanisms that drive colorectal cancer metastasis are not well characterized.

Methods

HT29 LM1, HT29 LM2, HT29 LM3 cell lines were derived from the human colorectal cancer cell line HT29 following multiple rounds of in vivo selection in immunodeficient mice.

Results

CD44 expression, a transmembrane glycoprotein involved in cell-cell and cell-matrix adhesions, and cancer cells adhesion to endothelial cells was increased in all in vivo selected cell lines, with maximum CD44 expression and cancer cells …


Superoxide Signaling In Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness, Bradley S. Fleenor, Jason S. Eng, Amy L. Sindler, Bryant T. Pham, Jackson D. Kloor, Douglas R. Seals Jan 2014

Superoxide Signaling In Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness, Bradley S. Fleenor, Jason S. Eng, Amy L. Sindler, Bryant T. Pham, Jackson D. Kloor, Douglas R. Seals

Graduate Center for Nutritional Sciences Faculty Publications

We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s(-1)) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P < 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P < 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro-inflammatory proteins in PVAT-conditioned media (P < 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s(-1)) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P < 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue-cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P < 0.05). In addition, PVAT-derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age-related superoxide production and pro-inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness.