Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Multi-Ancestry Genome-Wide Association Analyses Improve Resolution Of Genes And Pathways Influencing Lung Function And Chronic Obstructive Pulmonary Disease Risk, Nick Shrine, Abril G. Izquierdo, Jing Chen, Richard Packer, Robert J. Hall, Anna L. Guyatt, Chiara Batini, Rebecca J. Thompson, Chandan Puvuluri, Vidhi Malik, Brian D. Hobbs, Matthew Moll, Wonji Kim, Ruth Tal-Singer, Per Bakke, Katherine A. Fawcett, Catherine John, Kayesha Coley, Noemi Nicole Piga, Sinjini Sikdar, Martin D. Tobin, Et Al. Jan 2023

Multi-Ancestry Genome-Wide Association Analyses Improve Resolution Of Genes And Pathways Influencing Lung Function And Chronic Obstructive Pulmonary Disease Risk, Nick Shrine, Abril G. Izquierdo, Jing Chen, Richard Packer, Robert J. Hall, Anna L. Guyatt, Chiara Batini, Rebecca J. Thompson, Chandan Puvuluri, Vidhi Malik, Brian D. Hobbs, Matthew Moll, Wonji Kim, Ruth Tal-Singer, Per Bakke, Katherine A. Fawcett, Catherine John, Kayesha Coley, Noemi Nicole Piga, Sinjini Sikdar, Martin D. Tobin, Et Al.

Mathematics & Statistics Faculty Publications

Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of …


Short-Term Removal Of Exercise Impairs Glycemic Control In Older Adults: A Randomized Trial, Leryn J. Reynolds, Troy M. Williams, Joel E. Harden, Hannah M. Twiddy, Monica L. Kearney Jan 2023

Short-Term Removal Of Exercise Impairs Glycemic Control In Older Adults: A Randomized Trial, Leryn J. Reynolds, Troy M. Williams, Joel E. Harden, Hannah M. Twiddy, Monica L. Kearney

Human Movement Studies & Special Education Faculty Publications

Postprandial glycemia (PPG) predicts cardiovascular disease, and short-term physical inactivity increases PPG in young, active adults. Whether this occurs in older, active adults who may be more prone to bouts of inactivity is unknown. This study determined if postprandial interstitial glucose (PPIG) was impaired in active older adults following the removal of exercise for 3 days (NOEX) compared to active young adults. In this randomized, crossover study, 11 older (69.1 ± 1.9 years) and 9 young (32.8 ± 1.8 years) habitually active (≥90 min/week of exercise) adults completed 3-days of NOEX and 3-days of normal habitual exercise (EX), separated by …


Pinch Force Generation During Scaling By Dental Professionals: A Systematic Review, Jessica R. Suedbeck, Emily A. Ludwig Jan 2023

Pinch Force Generation During Scaling By Dental Professionals: A Systematic Review, Jessica R. Suedbeck, Emily A. Ludwig

Dental Hygiene Faculty Publications

Objective

The objective of this review was to examine the impact of instrument designs on pinch force generation during scaling by dental professionals.

Methods

Three databases were utilized from September 2019 to November 2021 in addition to hand-searching specific journals and reference lists. Research articles that examined pinch force generation in dental professionals during scaling with manual instruments only were included. Bias was assessed in the individual articles.

Results

Six research articles were included with sample populations that varied from 12 to 24 participants. Four articles evaluated instrument designs in relation to pinch force generation during scaling by dental professionals. …


A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyag Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu Jan 2023

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyag Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu

Computer Science Faculty Publications

Background: Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.

Methods: Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …