Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Tgfbeta1 And Stat3 As Regulators Of The Ha Synthesis And Signaling Pathway, Brenda Goretty Trevizo Aug 2020

Tgfbeta1 And Stat3 As Regulators Of The Ha Synthesis And Signaling Pathway, Brenda Goretty Trevizo

Legacy Theses & Dissertations (2009 - 2024)

The studies described here explored the role of Transforming Growth Factor Beta-1 (TGFβ1) and Signal Transducer and Activator of Transcription 3 (STAT3) as potential regulators of the Hyaluronic Acid (HA) synthesis and signaling pathway in human mammary cells. Our results support previous findings in which TGFβ1, a well characterized driver of the epithelial-mesenchymal transition (EMT) has been shown to regulate HA synthesis and signaling. Interrogation of The Cancer Genome Atlas (TCGA) indicated HAS2 expression positively correlated with TGFβ1 mRNA expression in breast cancer patients and in breast cancer cell lines. RT-qPCR experiments were used to measure the expression of the …


Targeting The Rage Signaling Pathway To Ameliorate The Complications Of Diabetes, Stephen James Dansereau Jan 2020

Targeting The Rage Signaling Pathway To Ameliorate The Complications Of Diabetes, Stephen James Dansereau

Legacy Theses & Dissertations (2009 - 2024)

Diabetes is a global health epidemic that can be devastating to those afflicted,


Understanding The Rage Signaling Pathway And Its Contribution To Diabetic Complications, Leon Vegas Ho Jan 2020

Understanding The Rage Signaling Pathway And Its Contribution To Diabetic Complications, Leon Vegas Ho

Legacy Theses & Dissertations (2009 - 2024)

The binding of advanced glycation end products (AGEs) to the receptor for advanced glycation end products (RAGE) is an important feature of the RAGE signaling pathway that plays a role in the pathogenesis of diabetes. Under high glucose concentration, RAGE expression increases immensely from the formation of a Schiff base by glucose bounded to lysine. This triggers an inflammatory and immune response and upregulates the expression of RAGE and causes an accumulation of AGEs in the body. As a result, this leads to the development of diabetes and other complications such as, atherosclerosis, nephrothapy, and retinopathy. To remedy AGE accumulation, …