Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular biology

Molecular Biology

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Life Sciences

Extraction Of Transcriptional Regulators For The Polyhydroxyalkanoate Depolymerase Gene From Streptomyces Nymphaeiformis, Kara B. Eppard, Stephen F. Baron Dec 2023

Extraction Of Transcriptional Regulators For The Polyhydroxyalkanoate Depolymerase Gene From Streptomyces Nymphaeiformis, Kara B. Eppard, Stephen F. Baron

Honors Projects

Plastic waste has become an increasingly prevalent environmental pollutant. This problem is exacerbated by the inability of plastic to degrade under most natural conditions. In contrast, polyhydroxyalkanoates (PHAs) are biologically produced, plastic-like polymers that can be broken down and metabolized by bacteria. The bacterium Streptomyces nymphaeiformis can degrade the PHA, polyhydroxybutrate (PHB), using an extracellular PHB depolymerase, which is encoded by the phaZ gene. PHB depolymerase is synthesized only in the presence of PHB or its monomer, but not glucose, suggesting that transcription of phaZ is regulated, presumably by transcriptional regulatory proteins that bind to its promoter region. The DNA …


Minimal Carbon Requirements For Potential Colonizers Of Other Planets, Benjamin Tan May 2023

Minimal Carbon Requirements For Potential Colonizers Of Other Planets, Benjamin Tan

Biological Sciences Undergraduate Honors Theses

The NASA Office of Planetary Protection regulates the safe scientific exploration of other planets. Specifically, the office enacts rules to discourage interplanetary mission practices that would lead to the contamination of Earth-originating microbial life on other planets. Interplanetary contamination jeopardizes the potential to obtain reliable scientific evidence for extraterrestrial life. In coordination with this office, the biosignatures of potential colonizers of other celestials bodies are studied. Several organisms of Earth qualify as potential colonizers of other planets.

This experiment focused on the environment of Mars in particular. Two organisms were tested: Desulfovibrio arcticus and Desulfotalea psychrophila. Both are psychrotolerant or …


Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee Aug 2022

Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee

Graduate Theses and Dissertations

This dissertation focused on the efficacy and validity of whole genome resequencing (WGR) for fine mapping genetic determinants of particular traits in a given organism. Previously, our research group used WGR to identify haplotype blocks of single nucleotide polymorphisms associated with ascites resistance with some as strong candidates for use in marker-assisted selection (MAS). Chapter 2 discusses the completion of a MAS project through evaluation of ascites incidence as well as production traits of economic value to poultry producers. Thus, the MAS project also covered viability of this methodology in the industry. The MAS significantly reduced ascites incidence in broilers …


Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani May 2022

Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani

ETD Archive

Telomeres are a nucleoprotein structure at the end of the chromosome and are essential for genome integrity and chromosome stability. Telomere lengths are primarily maintained by a telomerase-mediated pathway but can be maintained by a homologous recombination-mediated pathway. However, detailed mechanisms of telomere maintenance are still unclear in many eukaryotes, including an important human pathogen, Trypanosoma brucei. Telomeres can be elongated by telomerase in T. brucei, a causative agent of fatal sleeping sickness in humans and nagana in cattle. T. brucei evades host immune response by regularly switching its major surface antigen, variant surface glycoprotein (VSG), a process known as …


Halogen Bonding: A Computational Chemistry Investigation Of The Interaction Between Thyroid Hormone And Deiodinase, William Rice Apr 2022

Halogen Bonding: A Computational Chemistry Investigation Of The Interaction Between Thyroid Hormone And Deiodinase, William Rice

Honors Theses

Halogen bonding is a noncovalent interaction that continues to garner interest among the scientific community. Investigation of halogen bonds in biological contexts typically revolves around rational drug design for developing therapeutics. However, halogen bonding may be occurring naturally in our body every day. Thyroid hormone and its regulating enzyme, iodothyronine deiodinase, show promising results for a halogen bonding interaction that happens during catalysis. Prior work has examined the interaction between the iodine of thyroid hormone and the selenium of iodothyronine deiodinase. However, this study is the first of its kind to use computational chemistry methods to analyze the halogen bond …


Microbial Community Analysis: Biofilm Inhibition & Algae Associated Community Structure, Michelle V. Fong Jan 2022

Microbial Community Analysis: Biofilm Inhibition & Algae Associated Community Structure, Michelle V. Fong

University of the Pacific Theses and Dissertations

Natural products chemistry is the pursuit of bioactive small molecules from living organisms. These can be classified as primary metabolites if they are essential to survival, and secondary metabolites if they are accessory, playing a role in communication, defense, recruitment, etc.. Natural products have made a significant contribution to society – of 1,881 FDA-approved drugs from 1981 to 2019, 4% were pure natural products, 19% were natural products derived, and 3% were synthetic drugs with a natural products pharmacophore targeting a wide range of diseases and infections (Newman & Cragg, 2020). Pharmacophores are structural components of drugs that are responsible …


Anal Human Papillomavirus Infection Among Men Who Have Sex With Men And Transgender Women Living With And Without Hiv In Pakistan: Findings From A Cross-Sectional Study, Muslima Ejaz, Soren Andersson, Salma Batool, Tazeen Saeed Ali, Anna Mia Ekström Nov 2021

Anal Human Papillomavirus Infection Among Men Who Have Sex With Men And Transgender Women Living With And Without Hiv In Pakistan: Findings From A Cross-Sectional Study, Muslima Ejaz, Soren Andersson, Salma Batool, Tazeen Saeed Ali, Anna Mia Ekström

Community Health Sciences

Objectives: The aim of this study was to determine the prevalence of infection, genotypes and risk factors for human papillomavirus (HPV) among men who have sex with men (MSM) and transgender women living with and without HIV in Pakistan. Anal infection with HPV is very common worldwide among MSM, particularly among MSM living with HIV. The high prevalence of HIV among MSM and male-to-female transgendered individuals in Pakistan is a significant health concern since access to screening and health-seeking is often delayed in this stigmatised key population.
Design: This cross-sectional study was conducted between March 2016 and November 2017.
Participants, …


Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola Sep 2021

Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola

Dissertations and Theses

Cul3-based E3 ligase is responsible for regulating a variety of cellular pathways, many of which are known to have profound effects on the proper function of multicellular organisms. Although progress over the past years has been truly impressive, our understanding of the mechanisms of E2 recruitment and selection by the BCR complex and all the roles that Cul3 plays on kidneys remains in its infancy. To explore these aspects, this dissertation aims to analyze the Cul3 complex using two different approaches: (1) We used the powerful tool of chimeric analysis to map the essential domain binding characteristics of Cul3 taking …


High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon Jun 2021

High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon

FIU Electronic Theses and Dissertations

The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. I investigated biochemical differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and the content of reduced thiols of the proteome. By characterizing the xanthophyll content of the two strains I was able to determine that KbLT performs qE inconsistently. To investigate the …


Vitamin D3 Induces Mesenchymal-To-Endothelial Transition And Promotes A Proangiogenic Niche Through Igf-1 Signaling, Lei Chen, Anweshan Samanta, Lin Zhao, Nathaniel R. Dudley, Tanner Buehler, Robert J. Vincent, Jeryl Hauptman, Magdy Girgis, Buddhadeb Dawn Apr 2021

Vitamin D3 Induces Mesenchymal-To-Endothelial Transition And Promotes A Proangiogenic Niche Through Igf-1 Signaling, Lei Chen, Anweshan Samanta, Lin Zhao, Nathaniel R. Dudley, Tanner Buehler, Robert J. Vincent, Jeryl Hauptman, Magdy Girgis, Buddhadeb Dawn

School of Medicine Faculty Publications

Biological Sciences; Physiology; Molecular Biology; Cell Biology


Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke Jan 2021

Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke

Electronic Theses and Dissertations

Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by the disruption of Fragile X Mental Retardation Protein (FMRP) function in neurons, affecting nearly 1 in 7,500 individuals. Although FXS typically occurs from a complete loss of FMRP expression due to a CGG trinucleotide expansion within the 5’UTR of the FMR1 gene, single nucleotide polymorphisms (SNPs) within the KH domains of FMRP have been shown to severely disrupt FMRP function. FMRP is an RNA-binding translation repressor that interacts with ~4% of the neuronal transcriptome. Many target mRNAs encode for proteins important for regulating synaptic processes and modulate synaptic plasticity. It …


Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt Jan 2021

Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt

University of the Pacific Theses and Dissertations

In most eukaryotic organisms, the ubiquitination pathway is one of the most important and versatile signaling systems in use. It is integral to processes such as protein degradation and homeostasis, DNA repair cell cycle regulation, signaling and regulation, epigenetics, and many more. Ubiquitin (Ub) is a short polypeptide of 8.6 kDa, 76 residues that functions as a reversible post-translation modification (PTM). It furthermore contains 7 different lysine residues (K6, K11, K27, K29, K33, K48, K63), all of which can form isopeptide linkages with one another to link individual Ub moieties to form unique polyUb chains onto substrates. The type of …


Post-Translational Modification And Degradation Mechanisms Of The Aryl Hydrocarbon Receptor, Yujie Yang Jan 2021

Post-Translational Modification And Degradation Mechanisms Of The Aryl Hydrocarbon Receptor, Yujie Yang

University of the Pacific Theses and Dissertations

The aryl hydrocarbon receptor (AHR) is a transcription factor first discovered to be activated by exogenous ligands, such as dioxins, and helps promote downstream gene (e.g. CYP1A1) transcription to metabolize the toxicants. With the reports of various AHR targets genes, the expression levels and activities of AHR have been implicated in many physiological and pathological situations. Understanding how AHR protein level is regulated would provide more information to target AHR. AHR stays in the cytosol in the absence of ligand in a complex with HSP90, p23 and XAP2. After ligand activation, AHR translocates into the nucleus, fulfilling its transactivation function …


Factor Fiction? Identifying A Putative Toxoplasma Gondii Transcriptional Complex, Julia M. Paquette Jan 2021

Factor Fiction? Identifying A Putative Toxoplasma Gondii Transcriptional Complex, Julia M. Paquette

Honors Theses and Capstones

Toxoplasma gondii is a highly prevalent protozoan parasite that is estimated to infect 30-50% of the global population, though there is no treatment for chronic infection and current treatments for acute infection may have serious side effects. Transcription is a tightly regulated process in T. gondii, allowing the parasite to successfully invade and replicate within host cells, and it is thus a promising avenue to study gene regulation and to investigate possible novel therapeutics. In our lab’s previous research, a TFIID-like complex was identified in T. gondii and found to be associated with the parasite specific bromodomain protein BDP3. …


Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells Dec 2020

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells

Honors Program Theses and Projects

Doxorubicin is a successful anticancer drug approved for use in the 1970s and is considered to be one of the most effective cancer treatment methods today. Although Doxorubicin has positive survival statistics it has very negative side effects in many cases. Bleeding from the soles of the palms and feet, along with excruciating pain is often exhibited through the administration of this drug. Based on the preliminary findings utilizing optical tweezers we anticipate that this study will provide critical information about the drug binding mechanism. Single molecule biophysics techniques have provided useful insight into the DNA-binding mechanisms of small molecules. …


Determining A Method For Expressing And Purifying Cytochrome P450 4v2: A Protein Involved In Bietti's Crystalline Dystrophy, Cody Lane Turner Dec 2020

Determining A Method For Expressing And Purifying Cytochrome P450 4v2: A Protein Involved In Bietti's Crystalline Dystrophy, Cody Lane Turner

MSU Graduate Theses

Within the Cytochrome P450 class of enzymes, there are a group known as the “orphan” cytochromes. The “orphan” classification comes from the poorly understood in vivo functionality and substrate specificity. Cytochrome P450 4V2 (CYP4V2) is one of these “orphans” and belongs to the CYP4 family. The CYP4 family is known for the omega oxidation of endogenous fatty acids. This family is most commonly found on chromosome 1 (CYP4ABXZ). CYP4V2 is unique in that its location is bound to chromosome 4 as discovered by Jiao in 2004. Mutations within the CYP4V2 gene have been associated with the …


Changes In Gene Expression Profiles In Müller Glia Following Exposure To An Α7 Nicotinic Acetylcholine Receptor Agonist, Megan L. Stanchfield Jul 2020

Changes In Gene Expression Profiles In Müller Glia Following Exposure To An Α7 Nicotinic Acetylcholine Receptor Agonist, Megan L. Stanchfield

Masters Theses

Previous studies from this lab have determined that dedifferentiation of Müller glia (MG) occurs after application of an α7 nicotinic acetylcholine receptor agonist, PNU-282987 (PNU), to retinal pigment epithelial (RPE) cells in adult rodents. This study was designed to explore the role of the HB-EGF/Ascl1/Lin28a signaling pathway in MG dedifferentiation to retinal progenitor cells. RNAseq was performed on MG following contact with RPE-J cells treated with PNU-282987. Up- or down-regulated genes were compared with published literature of MG dedifferentiation that occurs in lower vertebrate regeneration or with transcript profiles during early mammalian development. Between 8-12 hours, up-regulation was observed in …


Iron-Sulfur Cluster Assembly; In Vivo Analysis Of The Methanogenic Suf System, Evan Dunkle Aug 2019

Iron-Sulfur Cluster Assembly; In Vivo Analysis Of The Methanogenic Suf System, Evan Dunkle

LSU Master's Theses

Iron-sulfur (Fe-S) clusters are among the most ancient and prevalent of all biological cofactors. Their assembly into associated proteins is a tightly regulated process with many organisms employing multiple cluster assembly pathways. Much is known about Fe-S cluster assembly in aerobic organisms such as Escherichia coli (E. coli) but little is known in regards to cluster assembly in more ancient organisms such as methanogens. Methanogens are members of the domain of Archaea and are defined by their ability to generate methane as a byproduct of their main energy generating pathway. Methanogens also have significantly higher Fe-S cluster content …


Evaluating Methods Of Obtaining Male Pheromone From Hymenochirus Sp. Using Analytical Chemistry, Vincent Wing-Kun Leung Jan 2019

Evaluating Methods Of Obtaining Male Pheromone From Hymenochirus Sp. Using Analytical Chemistry, Vincent Wing-Kun Leung

University of the Pacific Theses and Dissertations

Male Hymenochirus sp. frogs are known to release pheromone that attracts females of the same species. Four methods for collecting secretions containing pheromone in Hymenochirus sp. were tested: norepinephrine injection, gonadotropin-releasing hormone injection, homogenization of gland tissue, and electrostimulation of the skin over the breeding gland area. The samples collected were analyzed using high-performance liquid chromatography (HPLC) and mass spectrometry. The HPLC chromatograph for the male norepinephrine sample contained a peak at 6.4 min that was not in the female norepinephrine sample HPLC chromatograph. The male norepinephrine sample mass spectrum had a peak of m/z 292.0 not in the female …


Investigating The Effect Of Rutaecarpine On The Benzo[A]Pyrene-Induced Dna Damage In Vitro, You Li Jan 2019

Investigating The Effect Of Rutaecarpine On The Benzo[A]Pyrene-Induced Dna Damage In Vitro, You Li

University of the Pacific Theses and Dissertations

Benzo[a]pyrene (BaP), is one of the most potent mutagens and carcinogens known. It requires metabolic activation through cytochrome P450 (CYP)1A1 to yield the ultimate carcinogenic metabolite, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BPDE can bind to DNA and form predominantly covalent (+) trans adducts at the N2 position of guanine causing DNA damage. Rutaecarpine (RTC) is an herbal medicine that has been used to treat several diseases such as headache, hypertension, gastrointestinal disorders, amenorrhea, and anti-inflammation. It has also been reported as a potent inducer of CYP enzymes, including CYP1A1, and CYP1A2. The mechanisms underlying up-regulation of CYP1A1 by RTC is dependent on aryl …


Development Of A Biomarker Panel For Identifying Stressed Marine Mammals, Laura Pujade Jan 2019

Development Of A Biomarker Panel For Identifying Stressed Marine Mammals, Laura Pujade

University of the Pacific Theses and Dissertations

Increasing anthropogenic disturbance in marine ecosystems such as fishing, oil-drilling, and noise pollution can have detrimental effects on the reproduction and survival of apex predators such as marine mammals. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased circulating glucocorticoid (GCs) hormones, which alter expression of target genes encoding metabolic enzymes and other mediators of stress. Prolonged HPA axis stimulation may increase catabolism of nutrient stores and suppress immune and reproductive functions, impacting the fitness of marine mammals. GCs measurements are used to identify wild animals experiencing stress. However, these measurements may not be sensitive enough to distinguish between an …


A Multisession, Undergraduate Molecular Biology Lab Experiment Using Green Fluorescent Protein Including Subcloning And Color Changing Mutagenesis, Nathan S. Winter Apr 2018

A Multisession, Undergraduate Molecular Biology Lab Experiment Using Green Fluorescent Protein Including Subcloning And Color Changing Mutagenesis, Nathan S. Winter

Chemistry Faculty Publications

This paper describes a series of experiments involving handling and manipulating the DNA coding for Green Fluorescent Protein (GFP) including the subcloning of this gene, and mutating the DNA so that Cyan Fluorescent Protein (CFP) or Blue Fluorescent protein (BFP) are expressed. The primers needed for the PCR based subcloning of GFP are presented, as are those needed to mutate the GFP to either CFP or BFP.


Discovery Of Small Molecules Blocking Oncogenic K-Ras Activity, Sarah E. Kovar Jan 2018

Discovery Of Small Molecules Blocking Oncogenic K-Ras Activity, Sarah E. Kovar

Browse all Theses and Dissertations

Ras proteins were the first human oncogenes discovered. Although Ras has been found to be the most frequently mutated oncogene, there are currently no anti-Ras-specific drugs available in the clinic. Ras is responsible for initiating cellular pathways that include proliferation, survival, and apoptosis. There are three ubiquitously expressed Ras isoforms in mammalian cells: H-, N-, and K-Ras. Interaction with the plasma membrane is required for Ras biological activity. When Ras interaction with the plasma membrane is blocked, Ras activity is inhibited. Two compounds (from Dr. Ketcha, WSU Chemistry Department) were tested and shown to dissociate K-Ras, but not H-Ras from …


Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski Apr 2017

Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski

Toxicology and Cancer Biology Faculty Publications

Ultraviolet light (UV) is an inducer of reactive oxygen species (ROS) as well as 6-4-photoproducts and cyclobutane pyrimidine dimers (CPD) in the skin, which further cause damage to the skin cells. Irradiation of cultured human melanocytes with UVB stimulated ROS production, which was reduced in cells treated with melatonin or its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT). Melatonin and its derivatives also stimulated the expression of NRF2 (nuclear factor erythroid 2 [NF-E2]-related factor 2) and its target enzymes and proteins that play an important role in cell protection from different damaging factors including UVB. Silencing …


The Selective Survival Of Escherichia Coli In Freshwater Beach Sand, Natalie Ann Rumball May 2016

The Selective Survival Of Escherichia Coli In Freshwater Beach Sand, Natalie Ann Rumball

Theses and Dissertations

The quantification of Escherichia coli or E. coli is the most common method used to detect recent fecal pollution in recreational water, as this species is known for its high abundance in fecal matter and assumed host-associated nature. However, it has been determined that some strains are capable of long-term survival and potential propagation in non-host environments, such as the beach sand. These long-term environmental survivors are host-independent and are not associated with the same health risks as those E. coli from recent fecal pollution. However, they have been shown to impact how water quality is perceived as they are …


Clinical Light Exposure, Photoreceptor Degeneration, And Ap-1 Activation: A Cell Death Or Cell Survival Signal In The Rhodopsin Mutant Retina?, Danian Gu, William Beltran, Zexiao Li, Gregory M. Acland, Gustavo D. Aguirre Feb 2016

Clinical Light Exposure, Photoreceptor Degeneration, And Ap-1 Activation: A Cell Death Or Cell Survival Signal In The Rhodopsin Mutant Retina?, Danian Gu, William Beltran, Zexiao Li, Gregory M. Acland, Gustavo D. Aguirre

Gustavo D. Aguirre, VMD, PhD

PURPOSE. The T4R RHO mutant dog retina shows retinal degeneration with exposures to light comparable to those used in clinical eye examinations of patients. To define the molecular mechanisms of the degeneration, AP-1 DNA-binding activity, composition, posttranslational modification of the protein complex, and modulation of ERK/MAPK signaling pathways were examined in light-exposed mutant retinas. METHODS. Dark-adapted retinas were exposed to short-duration light flashes from a retinal camera used clinically for retinal photography and were collected at different time points after exposure. Electrophoretic mobility shift assay (EMSA), supershift EMSA, Western blot analysis, and immunocytochemistry were used to examine AP-1 signaling. RESULTS. …


Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model For Best Disease, Karina E. Guziewicz, Barbara Zangerl, Sarah J. Lindauer, Robert F. Mullins, Lynne S. Sandmeyer, Bruce H. Grahn, Edwin M. Stone, Gregory M. Acland, Gustavo D. Aguirre Feb 2016

Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model For Best Disease, Karina E. Guziewicz, Barbara Zangerl, Sarah J. Lindauer, Robert F. Mullins, Lynne S. Sandmeyer, Bruce H. Grahn, Edwin M. Stone, Gregory M. Acland, Gustavo D. Aguirre

Gustavo D. Aguirre, VMD, PhD

PURPOSE. Canine multifocal retinopathy (cmr) is an autosomal recessive disorder of multiple dog breeds. The disease shares a number of clinical and pathologic similarities with Best macular dystrophy (BMD), and cmr is proposed as a new large animal model for Best disease. METHODS. cmr was characterized by ophthalmoscopy and histopathology and compared with BMD-affected patients. BEST1 (alias VMD2), the bestrophin gene causally associated with BMD, was evaluated in the dog. Canine ortholog cDNA sequence was cloned and verified using RPE/choroid 5′- and 3′-RACE. Expression of the canine gene transcripts and protein was analyzed by Northern and Western blotting and immunocytochemistry. …


Analysis Of Alternative Storage Conditions For Dna Recovery From Field Samples, Alison Schutt, Emily Stricklin, Britta Ten Haken, Joseph Tolsma, Laurie Furlong, Sara S. Tolsma Jan 2016

Analysis Of Alternative Storage Conditions For Dna Recovery From Field Samples, Alison Schutt, Emily Stricklin, Britta Ten Haken, Joseph Tolsma, Laurie Furlong, Sara S. Tolsma

Northwestern Review

As ecologists increasingly employ molecular methods, they find that tried and true preservation solutions (e.g. ethanol or formalin) may not be optimal when samples are targeted for genetic analyses. Before traveling to remote sample sites, researchers need to consider which preservation methods are likely to yield the largest quantity and highest quality of DNA based on their travel times and field conditions. They also need to consider whether they will have access to preservatives at remote sites and whether those preservatives can be safely transported. To determine which preservation methods would most reliably preserve tissue for genetic analysis under a …


Characterization Of A Phosphonate-Specific Cytidylyltransferase, Kissa Batul Jan 2016

Characterization Of A Phosphonate-Specific Cytidylyltransferase, Kissa Batul

Theses and Dissertations (Comprehensive)

Antibiotic resistance is a major global health concern that requires new therapeutic approaches. Furthermore, a lack of narrow spectrum antibiotics on the market produces unintended consequences with respect to changes in our microbial make up. Phosphonates are reduced versions of phosphates that possess a C-P bond which is more resistant to enzymatic and chemical degradation. The role of phosphonate containing macromolecules (e.g. cell surface polysaccharides) remains enigmatic, however their presence suggests that they may confer an advantage. The biosynthesis of phosphonate-containing macromolecules is unknown, but a pathway is proposed involving aLicC type cytidylyltransferase-catalyzed conjugation to a phosphonate followed by a …


Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg May 2015

Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg

Scholars Week

In C. elegans, the glutamate receptor GLR-1 functions in the nervous system to decode environmental stimuli and sensory experiences, and to regulate locomotion and the formation of long-term memory. C. elegans GLR-1 is homologous to mammalian glutamate receptors, and we can use this simple organism as a system to better understand the life cycle of human receptors (1). Because GLR-1 is a membrane protein, it is first assembled in the interior of a neuron, and then it is transported to the membrane at the surface of the cell so that it can receive chemical signals (glutamate) from the environment. Currently, …