Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Metabolism

Biochemistry, Biophysics, and Structural Biology

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 125

Full-Text Articles in Life Sciences

Predicting The Identities Of Su(Met-2) And Met-3 In Neurospora Crassa By Genome Resequencing, Kevin Mccluskey, Daren Brown, Erin Bredeweg, Scott E. Baker Feb 2024

Predicting The Identities Of Su(Met-2) And Met-3 In Neurospora Crassa By Genome Resequencing, Kevin Mccluskey, Daren Brown, Erin Bredeweg, Scott E. Baker

Fungal Genetics Reports

A significant number of classical genetic Neurospora crassa biochemical mutants remain anonymous, unassociated with a physical genome locus. By utilizing short read next-generation sequencing methods, it is possible to sequence the genomes of mutant strains rapidly and economically for the purpose of identifying genes associated with mutant phenotypes. We have taken this approach to connect genes and mutations to “methionineless” phenotypes in N. crassa.


The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut Aug 2023

The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut

Electronic Thesis and Dissertation Repository

The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. Additionally, the molecular mechanisms mediating RT-induced improvements in insulin sensitivity remain unclear. Therefore, the purpose of this study was to investigate the effects of RT on IR development in female …


Editorial: Rising Stars In Microbial Physiology And Metabolism: 2022, Nicole R. Buan, Ulrike Kappler Jul 2023

Editorial: Rising Stars In Microbial Physiology And Metabolism: 2022, Nicole R. Buan, Ulrike Kappler

Department of Biochemistry: Faculty Publications

This Research Topic was initiated to highlight work by young authors, the rising stars in the field of microbial physiology and metabolism. Microbial physiology and metabolism is an interdisciplinary field of research that seeks to uncover how the metabolic pathways of a cell work together to determine cell fate and function, whether that be growth, replication, pathogenicity, predation, respiration and fermentation, homeostasis or death. Ultimately, researchers like the ones featured here seek to integrate biological information and physicochemical parameters to try to find the underlying rules governing microbial function so that we can understand, predict and design microbes and microbial …


Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu Jan 2023

Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu

Graduate Theses, Dissertations, and Problem Reports

The retina and its neighboring retinal pigmented epithelium (RPE) are high energy-demanding and metabolically active tissues with specialized and complementary metabolism. They are metabolically interdependent and impact each other’s viability. Interestingly, many of the metabolic features in the retina and RPE are shared with the testis. For example, testis is also energy costly due to continuous sperm differentiation and it has similar metabolic inter-dependence between different testis cells. Both the retina and testis are vulnerable to mitochondrial metabolic impairments.

We conducted three research projects to understand 1) the nutrient utilization and communication in retina and RPE; 2) The profiling of …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum Dec 2022

Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum

Electronic Theses and Dissertations

Regular aerobic exercise promotes physiological cardiac growth, which is an adaptive response thought to enable the heart to meet higher physical demands. Cardiac growth involves coordination of catabolic and anabolic activities to support ATP generation, macromolecule biosynthesis, and myocyte hypertrophy. Although previous studies suggest that exercise-induced reductions in cardiac glycolysis are critical for physiological myocyte hypertrophy, it remains unclear how exercise influences the many interlinked pathways of metabolism that support adaptive remodeling of the heart. In this thesis project, we tested the general hypothesis that aerobic exercise promotes physiological cardiac growth by coordinating myocardial metabolism to promote glucose-supported anabolic pathway …


Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov Sep 2022

Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov

Biological, Geological, and Environmental Faculty Publications

Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high -amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [beta OHB]) that correlated with liver beta OHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic beta OHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor alpha (PPAR alpha) and its transcriptional target hepatokine …


Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai Aug 2022

Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai

Department of Biochemistry: Faculty Publications

No abstract provided.


Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis Aug 2022

Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis

Open Access Theses & Dissertations

Giardia lamblia is an intestinal protozoan found worldwide, including the U.S. This parasite exists in two morphologic stages - a replicative trophozoite and a relatively dormant yet viable cyst. While exposures of cysts to gastric acid during passage through the human stomach induces excystation, factors in the small intestine, where trophozoites colonize trigger encystation or cyst formation. Transformation into cyst stage is essential for Giardia to survive in the environment for months before infecting new hosts. Because of its small genome size (11.7 Mb), metabolic pathways in Giardia are highly reduced. As far as lipid metabolism is concerned, only limited …


A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin Aug 2022

A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin

Electronic Theses and Dissertations

Computational modeling of metabolic reactions and cellular systems is evolving as a tool for quantitative prediction of metabolic parameters and reaction pathway analysis. In this work, the basics of computational cell biology are presented as well as a summary of physical processes within the cell, and the algorithmic methods used to find time dependent solutions. Protein-protein and enzyme-substrate interactions are mathematically represented via mass action kinetics to construct sets of linear differential equations that describe reaction rates and formation of protein complexes. Using mass action methods, examples of reaction networks and their solutions are presented within the Virtual Cell simulation …


The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs Jun 2022

The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs

Undergraduate Honors Theses

Aggrephagy, a type of autophagy, is an essential cellular process by which protein aggregates are collected and broken down in the lysosome. Protein aggregates are implicated in several diseases including Alzheimer’s disease, diabetes, and cancer. Here, we investigate the ATG13-ATG101 protein complex, a sub-complex of the canonical ULK1 complex whose regulatory role in aggrephagy is not completely understood. We also develop a protein fragment complementation (PFC) assay using the biotin ligase TurboID to study the functions of the ATG13-ATG101 complex with increased specificity. We demonstrate that ATG13 is required for optimal degradation of p62-ubiquitin condensates. We also show that a …


Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek May 2022

Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek

Undergraduate Honors Theses

Hypoxia is a significant low oxygen state that has complex and diverse impacts on organisms. In aerobes, various adaptive responses to hypoxia are observed that vary depending on the level of oxygen depletion and previous adaptation, hence the continued attention to hypoxia as an important abiotic stressor. Adaptive responses to hypoxia are primarily governed by the hypoxia-inducible factors (HIFs), which activate downstream genetic pathways responsible for oxygen transport and metabolic plasticity. In aquatic habitats, oxygen availability can vary greatly over time and space. Therefore, aquatic organisms’ adaptation to hypoxia is likely pervasive, especially in genotypes originating from waterbodies prone to …


An Investigation Into The Roles Of Aldose Reductase And Acetate Kinase In The Metabolism Of Entamoeba Histolytica, Matthew B. Angel May 2022

An Investigation Into The Roles Of Aldose Reductase And Acetate Kinase In The Metabolism Of Entamoeba Histolytica, Matthew B. Angel

All Dissertations

Entamoeba histolytica is an amoebic parasite that infects an estimated 90 million people worldwide and causes approximately 100,000 deaths per year. As the causative agent of amoebic dysentery, this food- and water-borne pathogen represents a significant public health burden worldwide, particularly in areas with poor sanitation. While treatments for amoebiasis exist, they are often limited in their effectiveness. Thus, efforts to better understand the biology and physiology of this organism are vital to the development of novel treatments for this disease.

E. histolytica lacks the enzymes for many common metabolic pathways such as the citric acid cycle and oxidative phosphorylation …


The Role Of Cd5 In Cd4+ T Cell Metabolism, Joshua Bennett, Kiara Whitley, Claudia Freitas Phd, Christopher Haynie, Carlos Moreno, Scott Weber Mar 2022

The Role Of Cd5 In Cd4+ T Cell Metabolism, Joshua Bennett, Kiara Whitley, Claudia Freitas Phd, Christopher Haynie, Carlos Moreno, Scott Weber

Library/Life Sciences Undergraduate Poster Competition 2022

T cells serve a key role in the immunological response in the adaptive system. Different receptors present on the T cell have certain roles and are able to either inhibit or stimulate signaling which consequently regulates the function and metabolism of the cell. CD5 is an inhibitory co receptor expressed on the surface of T cells known to regulate thymocyte selection and TCR signaling . Our goal is to better understand the effects of CD5 regulation in metabolism. Using metabolic flux assays, we found that CD5KO naïve T cells have increased glycolysis and mitochondrial respiration in comparison to wild type …


Characterization And Manipulation Of O-Glcnacylation In Granulosa Cells Of Bovine Ovarian Antral Follicles, Abigail Marie Maucieri Jan 2022

Characterization And Manipulation Of O-Glcnacylation In Granulosa Cells Of Bovine Ovarian Antral Follicles, Abigail Marie Maucieri

Graduate College Dissertations and Theses

Glucose is widely recognized as the preferred energy substrate for metabolism by granulosa cells (GCs). Yet in most cells, 2-5% of glucose is shunted through the hexosamine biosynthesis pathway (HBP) for O-linked N-acetylglucosaminylation (O-GlcNAcylation). O-GlcNAcylation is an evolutionarily-conserved, post-translational process that modifies serine and threonine residues on a variety of proteins. O-GlcNAcylation is also considered a nutrient sensor that can regulate cellular processes such as metabolism, signal transduction, and proliferation. In this respect, O-GlcNAcylation may be similar to, and possibly mediate, AMP-activated protein kinase (AMPK) signaling and its nutrient-sensing actions. However, the occurrence of O-GlcNAcylation and its relative importance to …


Metabolic Synergy Between Human Symbionts Bacteroides And Methanobrevibacter, Jennie L. Catlett, Sean Carr, Mikaela Cashman, Megan D. Smith, Mary Walter, Zahmeeth Sakkaff, Christine A. Kelley, Massimiliano Pierobon, Myra B. Cohen, Nicole R. Buan Jan 2022

Metabolic Synergy Between Human Symbionts Bacteroides And Methanobrevibacter, Jennie L. Catlett, Sean Carr, Mikaela Cashman, Megan D. Smith, Mary Walter, Zahmeeth Sakkaff, Christine A. Kelley, Massimiliano Pierobon, Myra B. Cohen, Nicole R. Buan

Department of Biochemistry: Faculty Publications

ABSTRACT Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing …


Arginine Catabolism And Polyamine Biosynthesis Pathway Disparities Within Francisella Tularensis Subpopulations, Yinshi Yue, Bhanwar Lal Puniya, Tomáš Helikar, Benjamin Girardo, Steven H. Hinrichs, Marilyn A. Larson Jan 2022

Arginine Catabolism And Polyamine Biosynthesis Pathway Disparities Within Francisella Tularensis Subpopulations, Yinshi Yue, Bhanwar Lal Puniya, Tomáš Helikar, Benjamin Girardo, Steven H. Hinrichs, Marilyn A. Larson

Department of Biochemistry: Faculty Publications

Francisella tularensis is a highly infectious zoonotic pathogen with as few as 10 organisms causing tularemia, a disease that is fatal if untreated. Although F. tularensis subspecies tularensis (type A) and subspecies holarctica (type B) share over 99.5% average nucleotide identity, notable differences exist in genomic organization and pathogenicity. The type A clade has been further divided into subtypes A.I and A.II, with A.I strains being recognized as some of the most virulent bacterial pathogens known. In this study, we report on major disparities that exist between the F. tularensis subpopulations in arginine catabolism and subsequent polyamine biosynthesis. The genes …


The Impact Of Nitric Oxide On Dendritic Cell Metabolism, Julia Priscilla Snyder Jan 2022

The Impact Of Nitric Oxide On Dendritic Cell Metabolism, Julia Priscilla Snyder

Graduate College Dissertations and Theses

Dendritic cells (DCs) are sentinel immune cells capable of directly sensing and responding to pathogens. Upon pathogen recognition, DCs undergo a process of activation that allows them to participate in the proinflammatory response at the site of infection and to initiate the adaptive immune response through antigen presentation to T cells. Because activated DCs serve as the critical link between innate and adaptive immunity, modulating DC activation could be a powerful tool in various clinical contexts such as vaccine design. DC activation is accompanied by widespread changes in metabolism including the rapid upregulation of glycolysis, which is sustained in DCs …


Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse Aug 2021

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse

Arts & Sciences Electronic Theses and Dissertations

Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have …


Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden Jul 2021

Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden

Masters Theses

Substantial evidence exists regarding how skeletal muscles use energy and how this affects muscular performance. What remains unclear is how characteristics of muscle energetics affect whole-body energetics during daily living, and what effects this may have on mobility. The goal of this study was to determine the associations between muscle and whole-body energetics including the relationships between: 1) muscle PCr depletion (∆PCr) in response to light intensity isotonic contractions and the oxygen deficit at the onset of a 30-min treadmill walk (30MTW), and, 2) muscle oxidative capacity and excess post-exercise oxygen consumption (EPOC; 30MTW), respiratory exchange ratio (RER; 30MTW), and …


Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf Jun 2021

Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf

Electronic Thesis and Dissertation Repository

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of a pluripotency continuum, respectively referred to as naïve and primed pluripotent states. A third, recently discovered intermediate state has been described as the ‘formative state’. Metabolism has been traditionally regarded as a by-product of cell fate; however, recent evidence now supports metabolism as promoting stem cell fate. Pyruvate kinase muscle isoforms 1 and 2 (PKM1 and PKM2) catalyze the final, rate limiting step of glycolysis generating adenosine triphosphate (ATP) and pyruvate; however, the precise role(s) of these isozymes in naïve, formative, and primed pluripotency is …


Construction And Analysis Of Three Multi-Partite Synthetic Microbial Communities, Alexander J. Lazzara, Jacob K. Fanning May 2021

Construction And Analysis Of Three Multi-Partite Synthetic Microbial Communities, Alexander J. Lazzara, Jacob K. Fanning

Honors Theses

Microbial Communities are of interest to molecular biologists hoping to understand the nature of metabolic interactions between co-existing, or possibly mutualistic, organisms. These interactions are ubiquitous in nature, but understanding the molecular mechanisms involved remains challenging and not well understood. Here, we design three tri-partite microbial circuits based on possible interactions among involved microbes, which are discussed and may suggest mutualistic interactions. Carbon and nitrogen molecular pathways and the intracellular metabolism of each microbe is discussed. We present minimal growth media that will ensure that organisms utilize available resources, which may originate from metabolic processes in neighboring microbes, simulating a …


Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit May 2021

Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit

Electronic Theses and Dissertations

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. Here, we explore a putative non-canonical function for PSAT1 using biochemical approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify cellular …


A Computational Analysis Of Selective Metabolism Of Bupropion By Cytochrome P450 2b6, Alyssa Santos May 2021

A Computational Analysis Of Selective Metabolism Of Bupropion By Cytochrome P450 2b6, Alyssa Santos

Honors Scholar Theses

Bupropion is an antidepressant and smoking cessation aid that is extensively metabolized by cytochrome P450 (CYP) 2B6. It is a highly lipophilic chiral drug that undergoes stereoselective metabolism with preference for the (S)-enantiomer. Despite chemical reasons for why bupropion can be metabolized by other CYP isozymes, clinically, bupropion is preferentially metabolized by CYP2B6, and at certain concentrations, CYP2E1, CYP2C19, and CYP3A4. A computational analysis with simulated molecular docking was performed using two different scoring algorithms to analyze the specific amino acid interactions between bupropion and various CYP isozymes. Trials were run using one stereoisomer of bupropion (R …


Carbon Dots For Specific “Off-On” Sensing Of Co2+ And Edta For In Vivo Bioimaging, Xiangping Wen, Guangming Wen, Wenyan Li, Zhonghua Zhao, Xine Duan, Wenjun Yan, John F. Trant, Yingqi Li Apr 2021

Carbon Dots For Specific “Off-On” Sensing Of Co2+ And Edta For In Vivo Bioimaging, Xiangping Wen, Guangming Wen, Wenyan Li, Zhonghua Zhao, Xine Duan, Wenjun Yan, John F. Trant, Yingqi Li

Chemistry and Biochemistry Publications

Fluorescent carbon dots (CDs) were hydrothermally synthesized from a mixture of frozen tofu, ethylenediamine and phosphoric acid in an efficient 64% yield. The resulting CDs exhibit good water solubility, low cytotoxicity, high stability, and excellent biocompatibility. The CDs selectively and sensitively detect Co2+ through fluorescent quenching with a detection limit of 58 nM. Fluorescence can be restored through the introduction of EDTA, and this phenomenon can be used to quantify EDTA in solution with a detection limit of 98 nM. As both analytes are detected by the same CD platform, this is an “off-on” fluorescence sensor for Co2+ and EDTA. …


Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun Jan 2021

Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun

Neuroscience Faculty Publications

N-glycans and lipids are structural metabolites that play important roles in cellular processes. Both show unique regional distribution in tissues; therefore, spatial analyses of these metabolites are crucial to our understanding of cellular physiology. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is an innovative technique that enables in situ detection of analytes with spatial distribution. This workflow details a MALDI-MSI protocol for the spatial profiling of N-glycans and lipids from tissues following application of enzyme and MALDI matrix.

For complete details on the use and execution of this protocol, please refer to Drake et al. (2018) and Andres et al. (2020).


Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson Jan 2021

Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson

Arts & Sciences Electronic Theses and Dissertations

Homeostatic T Cell Receptor Interactions with Self-Peptide Tune CD4+ T Cell Function

by

Juliet Marie Bartleson

Doctor of Philosophy in Biology and Biomedical Sciences

Immunology

Washington University in St. Louis, 2021

Professor Paul M. Allen, Chair

Mature CD4+ T cells circulate throughout peripheral secondary lymphoid organs using their T cell receptor (TCR) to surveil peptide presented on major histocompatibility complex class II molecules (pMHC) in search of cognate, antigenic peptide. In the absence of an immune challenge, however, the TCR is continuously interacting with self-pMHC, which induces a relatively weak TCR signal known as tonic signaling. These homeostatic TCR:self-pMHC interactions …