Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Biochemistry, Biophysics, and Structural Biology

NYMC Faculty Publications

2016

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Pcna-Associated Protein Pari Negatively Regulates Homologous Recombination Via The Inhibition Of Dna Repair Synthesis, Peter Burkovics, Lili Dome, Szilvia Juhasz, Veronika Altmannova, Marek Sebesta, Martin Pacesa, Kasper Fugger, Claus Storgaard Sorensen, Marietta Y W T Lee, Lajos Haracska, Lumir Krejci Apr 2016

The Pcna-Associated Protein Pari Negatively Regulates Homologous Recombination Via The Inhibition Of Dna Repair Synthesis, Peter Burkovics, Lili Dome, Szilvia Juhasz, Veronika Altmannova, Marek Sebesta, Martin Pacesa, Kasper Fugger, Claus Storgaard Sorensen, Marietta Y W T Lee, Lajos Haracska, Lumir Krejci

NYMC Faculty Publications

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after …


Repositioning Of Drugs Using Open-Access Data Portal Dtome: A Test Case With Probenecid (Review), Mohammad U. Ahmed, Dylan J. Bennett, Tze-Chen Hsieh, Barbara B. Doonan, Saba Ahmed, Joseph M. Wu Jan 2016

Repositioning Of Drugs Using Open-Access Data Portal Dtome: A Test Case With Probenecid (Review), Mohammad U. Ahmed, Dylan J. Bennett, Tze-Chen Hsieh, Barbara B. Doonan, Saba Ahmed, Joseph M. Wu

NYMC Faculty Publications

The one gene-one enzyme hypothesis, first introduced by Beadle and Tatum in the 1940s and based on their genetic analysis and observation of phenotype changes in Neurospora crassa challenged by various experimental conditions, has witnessed significant advances in recent decades. Much of our understanding of the association between genes and their phenotype expression has benefited from the completion of the human genome project, and has shown continual transformation guided by the effort directed at the annotation and characterization of human genes. Similarly, the idea of one drug‑one primary disease indication that traditionally has been the benchmark for the labeling and …